DOI QR코드

DOI QR Code

A review on fire resistance of steel-concrete composite slim-floor beams

  • Memarzadeh, Armin (Department of Civil Engineering, Faculty of Engineering and Technology, University of Mazandaran) ;
  • Shahmansouri, Amir Ali (Department of Civil Engineering, Faculty of Engineering and Technology, University of Mazandaran) ;
  • Nematzadeh, Mahdi (Department of Civil Engineering, Faculty of Engineering and Technology, University of Mazandaran) ;
  • Gholampour, Aliakbar (College of Science and Engineering, Flinders University)
  • Received : 2021.02.19
  • Accepted : 2021.06.14
  • Published : 2021.07.10

Abstract

The use of steel-concrete composites (SCCs) is growing rapidly in the construction industry because of their improved constructability, decreased labor cost, improved bond to reinforcing steel, improved structural integrity and accelerated project schedules compared to conventional composites. Fire is a constant danger to these structural composites. Therefore, the effect of fire on the behavior of SCCs must be evaluated and included in design provisions. Slim-floor beams (SFBs) are cost-effective systems which permit a major decrease in the thickness of industrial and commercial buildings floors. The present study reviews the recent advancements and history of SCCs together with recent studies investigating the fire performance of SFBs. First, the evolution of SCC systems is briefly discussed. Then, the fire resistance and specific thermal definitions of the main structural members are presented. Finally, analytical and numerical methods for predicting fire resistance, as well as the relevant experimental results are presented. The main focus of this study is on analyzing the performance of SFBs as a flooring system under fire. It is found that further investigation is required to improve Eurocode 4 provisions for enabling the rapidly growing construction industry to benefit from the advantages provided by composite construction methods with safety considerations. Numerous studies have so far been conducted in terms of enhancing the design quality of these systems, among which some will be discussed in this study.

Keywords

References

  1. ACI 318-14 (2014), Building code requirements for structural concrete (ACI 318-14) and commentary, American Concrete Institute.
  2. Aghaee, K., Yazdi, M.A. and Tsavdaridis, K.D. (2015), "Investigation into the mechanical properties of structural lightweight concrete reinforced with waste steel wires", Mag. Concrete Res., 67(4), 197-205. https://doi.org/10.1680/macr.14.00232.
  3. Aguado, J.V., Albero, V., Espinos, A., Hospitaler, A. and Romero, M.L. (2016), "A 3D finite element model for predicting the fire behavior of hollow-core slabs", Eng. Struct., 108, 12-27. https://doi.org/10.1016/j.engstruct.2015.11.008.
  4. Aguado, J.V., Espinos, A., Hospitaler, A., Ortega, J. and Romero, M.L. (2012), "Influence of reinforcement arrangement in flexural fire behavior of hollow core slabs", Fire Saf. J., 53, 72-84. https://doi.org/10.1016/j.firesaf.2012.06.015.
  5. Ahmed, I.M. and Tsavdaridis, K.D. (2019), "The evolution of composite flooring systems: applications, testing, modelling and eurocode design approaches", J. Constr. Steel Res., 155, 286-300. https://doi.org/10.1016/j.jcsr.2019.01.007.
  6. Ahn, J.K. and Lee, C.H. (2017), "Fire behavior and resistance of partially encased and slim-floor composite beams", J. Constr. Steel Res., 129 276-285. https://doi.org/10.1016/j.jcsr.2016.11.018.
  7. Alam, N., Maraveas, C., Tsavdaridis, K.D. and Nadjai, A. (2021), "Performance of Ultra Shallow Floor Beams (USFB) exposed to standard and natural fires", J. Build. Eng., 102192. https://doi.org/10.1016/j.jobe.2021.102192.
  8. Alam, N., Nadjai, A., Ali, F. and Nadjai, W. (2018a), "Structural response of unprotected and protected slim floors in fire", J. Constr. Steel Res., 142, 44-54. https://doi.org/10.1016/j.jcsr.2017.12.009.
  9. Alam, N., Nadjai, A., Ali, F., Vassart, O. and Hanus, F. (2018b). "Experimental and Analytical Investigations on Thermal Performance of Slim Floor Beams with Web Openings in Fire", Proceedings of the 10th International Conference on Structures in Fire, Belfast, UK,
  10. Alam, N., Nadjai, A., Maraveas, C., Tsarvdaridis, K. and Kahanji, C. (2019a), "Effect of air-gap on response of fabricated slim floor beams in fire", J. Struct. Fire Eng.. https://doi.org/10.1108/JSFE-04-2018-0011.
  11. Alam, N., Nadjai, A., Maraveas, C., Tsavdaridis, K. and Ali, F. (2018c). "Effect of air-gap on performance of fabricated slim floor beams in fire", Proceedings of the 9th International Conference on Advances in Steel Structures, Hong-Kong, China, https://doi.org/10.18057/ICASS2018.xxx.
  12. Alam, N., Nadjai, A., Maraveas, C., Tsavdaridis, K.D. and Ali, F. (2018d). "Response of Asymmetric Slim Floor Beams in Parametric-Fires", J. Phys. Conference Series, https://doi.org/10.1088/1742-6596/1107/3/032009.
  13. Alam, N., Nadjai, A., Vassart, O. and Hanus, F. (2019b), "A detailed investigation on thermal behaviour of slim floor beams with web openings at elevated temperatures", J. Struct. Fire Eng.
  14. Albero, V., Espinos, A., Serra, E., Romero, M. and Hospitaler, A. (2019), "Numerical study on the flexural behaviour of slim-floor beams with hollow core slabs at elevated temperature", Eng. Struct., 180, 561-573. https://doi.org/10.1016/j.engstruct.2018.11.061.
  15. Albero, V., Espinos, A., Serra, E., Romero, M.L. and Hospitaler, A. (2018). "Experimental study on the thermal behaviour of fire exposed slim-floor beams", Proceedings of the 12th International Conference on Advances in Steel-Concrete Composite Structures. ASCCS 2018.
  16. Albero, V., Serra, E., Espinos, A., Romero, M.L. and Hospitaler, A. (2020), "Innovative solutions for enhancing the fire resistance of slim-floor beams: Thermal experiments", J. Constr. Steel Res., 165, 105897. https://doi.org/10.1016/j.jcsr.2019.105897.
  17. Arikoglu, P., Baran, E. and Topkaya, C. (2020), "Behavior of channel connectors in steel-concrete composite beams with precast slabs", J. Constr. Steel Res., 172, 106167. https://doi.org/10.1016/j.jcsr.2020.106167.
  18. Bailey, C. (1999), "The behaviour of asymmetric slim floor steel beams in fire", J. Constr. Steel Res., 50(3), 235-257. https://doi.org/10.1016/S0143-974X(98)00247-8.
  19. Bailey, C. (2003), "Large scale fire test on a composite slim-floor system", Steel Compos. Struct., 3(3), 153-168. https://doi.org/10.12989/scs.2003.3.3.153.
  20. Bailey, C., Lennon, T. and Moore, D. (1999). "Full Scale Fire Test on the New UK Slim Floor System", Proceedings of the 2nd International Conference on Advances in Steel Structures, Hong Kong, China. https://doi.org/10.1016/B978-008043015-7/50123-8.
  21. Baldassino, N., Roverso, G., Ranzi, G. and Zandonini, R. (2019), "Service and Ultimate Behaviour of Slim Floor Beams: An Experimental Study", Structures. 17, 74-86, https://doi.org/10.1016/j.istruc.2018.10.001.
  22. BEng, S.H. and Park, S. (1994), "EN 1994-Eurocode 4: Design of composite steel and concrete structures".
  23. Bengar, H.A. and Shahmansouri, A.A. (2021), "Post-fire behavior of unconfined and steel tube confined rubberized concrete under axial compression", Structures.
  24. Bertagnoli, G., Gino, D. and Martinelli, E. (2017), "A simplified method for predicting early-age stresses in slabs of steel-concrete composite beams in partial interaction", Eng. Struct., 140, 286-297. https://doi.org/10.1016/j.engstruct.2017.02.058.
  25. Both, K., Fellinger, J. and Twilt, L. (1997), "Shallow floor construction with deep composite deck: from fire tests to simple calculation rules", Heron. 42(3), 145-158. http://heronjournal.nl/42-3/2.pdf.
  26. Bradford, M.A., Nethercot, D. and Trahair, N. (2001), Behaviour and design of steel structures to BS 5950, CRC Press.
  27. Braun, M., Hechler, O., Hauf, G. and Kuhlmann, U. (2011). "Embodied energy optimization by innovative structural systems", Final Conference of the COST Action C.
  28. Braun, M., Obiala, R. and Odenbreit, C. (2015), "Analyses of the loadbearing behaviour of deep-embedded concrete dowels, CoSFB", Steel Constr., 8(3), 167-173. https://doi.org/10.1002/stco.201510024.
  29. Braun, M., Obiala, R., Odenbreit, C. and Hechler, O. (2014). "CoSFB-Design and application of a new generation of slim-floor construction", Proceedings of the 7th European Conference on Steel and Composite Structures, Naples, Italy. http://hdl.handle.net/10993/22152.
  30. Braun, M., Obiala, R., Schafer, M., Kuhlmann, U., Reif, F. and Odenbreit, C. (2019), "Tragverhalten von CoSFB-Dubeln", Stahlbau, 88(7), 642-652. https://doi.org/10.1002/stab.201900036
  31. Braun, M., Zaganelli, D., Hanus, F., Obiala, R., Cajot, L.G. and Peirce, A. (2017), "Simplified analytical determination of the temperature distribution and the load bearing resistance of slim-floor beams", ce/papers, 1(2-3), 2780-2789. https://doi.org/10.1002/cepa.328.
  32. Cai, J., Burgess, I.W. and Plank, R.J. (2002), "Modelling of asymmetric cross-section members for fire conditions", J. Constr. Steel Res., 58(3), 389-412. https://doi.org/10.1016/S0143-974X(01)00052-9.
  33. Cajot, L.G., Gallois, L., Debruyckere, R. and Franssen, J.M. (2012), "Simplified design method for slim floor beams exposed to fire", Proceedings of the Nordic Steel Construction Conference, Oslo, Norway. http://hdl.handle.net/2268/123148.
  34. CEN European Committee for Standardization (2006), "1 1. Eurocodes 3-Design of steel structures-Part 1 1: General rules and rules for buildings [Tекст]", Brussells: European Committee for Standardization. 91,
  35. CEN European Committee for Standardization (2005), EN 1994-1-2, Eurocode 4: Design of composite steel and concrete structures, BSI British Standards, Brussels.
  36. Chen, S., Limazie, T. and Tan, J. (2015), "Flexural behavior of shallow cellular composite floor beams with innovative shear connections", J. Constr. Steel Res., 106, 329-346. https://doi.org/10.1016/j.jcsr.2014.12.021.
  37. Choi, J., Kim, H. and Haj-ali, R. (2010), "Integrated fire dynamics and thermomechanical modeling framework for steel-concrete composite structures", Steel Compos. Struct., 10(2), 129-149. https://doi.org/10.12989/scs.2010.10.2.129.
  38. Choi, S., Ali, F., Nadjai, A., Han, S. and Choi, J. (2011), "Structural Performance of Slim Beam Floor System in Fire", J. Struct. Fire Eng., 2(1), 57-66. https://doi.org/10.1260/2040-2317.2.1.57.
  39. Dai, X., Lam, D., Sheehan, T., Yang, J. and Zhou, K. (2020), "Effect of dowel shear connector on performance of slim-floor composite shear beams", J. Constr. Steel Res., 173, 106243. https://doi.org/10.1016/j.jcsr.2020.106243.
  40. Daniels, B.J. and Crisinel, M. (1993), " Composite slab behavior and strength analysis. Part II: Comparisons with test results and parametric analysis", J. Struct.Eng., 119(1), 36-49. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:1(36).
  41. De Nardin, S. and El Debs, A.L.H. (2009), "Study of partially encased composite beams with innovative position of stud bolts", J. Constr. Steel Res., 65(2), 342-350. https://doi.org/10.1016/j.jcsr.2008.03.021.
  42. Dong, Y. and Prasad, K. (2009), "Behavior of full-scale frames with slim floor slab construction under exposure in a fire resistance furnace", J. Fire Protection Eng., 19(3), 197-220, https://doi.org/10.1177%2F1042391509104183. https://doi.org/10.1177%2F1042391509104183
  43. Ellobody, E. (2011), "Nonlinear behaviour of unprotected composite slim floor steel beams exposed to different fire conditions", Thin-Wall. Struct., 49(6), 762-771. https://doi.org/10.1016/j.tws.2011.02.002.
  44. Ellobody, E. (2012), "Composite slim floor stainless steel beam construction exposed to different fires", Eng. Struct., 36, 1-13. https://doi.org/10.1016/j.engstruct.2011.11.029.
  45. Ellobody, E. and Lam, D. (2002), "Modelling of headed stud in steel-precast composite beams", Steel Compos. Struct., 2(5), 355-378. https://doi.org/10.12989/scs.2002.2.5.355.
  46. Espinos, A., Albero, V., Romero, M.L., Hospitaler, A. and Ibanez, C. (2017), "Application of advanced materials for enhancing the fire performance of slim-floors", ce/papers, 1(2-3), 2572-2581. https://doi.org/10.1002/cepa.306.
  47. Fathi, H. and Farhang, K. (2015), "Behavior of reinforcement SCC beams under elevated temperatures", Int. J. Adv. Struct. Eng.(IJASE), 7(3), 261-267, https://doi.org/10.1007/s40091-015-0097-2
  48. Fellinger, J.H. and Twilt, L. (1996), "Fire resistance of slim floor beams", Proceedings of the Composite Construction in Steel and Concrete III, Irsee, Germany,
  49. Fontana, M. and Borgogno, W. (1996), "Slim Floors-System Behaviour and Fire Resistance of Hollow Core Slabs on Flexible Beams", Proceedings of the Composite Construction in Steel and Concrete III, Irsee, Germany,
  50. GROUP, P. (2014), Deltabeam composite beam, Lahti
  51. Han, S.H. and Choi, S. (2008), "A Study on the Fire Resistance Capacity of Asymmetric Slimflor Beam Members", Adv. Nondestruct. Eval., II, https://doi.org/10.1142/9789812790194_0035.
  52. Hanaor, A. (2000), "Tests of composite beams with cold-formed sections", J. Constr.Steel Res., 54(2), 245-264, https://doi.org/10.1016/S0143-974X(99)00046-2
  53. Hanus, F., Zaganelli, D., Cajot, L.G. and Braun, M. (2017), "Analytical methods for the prediction of fire resistance of "reinforced" slim floor beams", ce/papers, 1(2-3), 2508-2517. https://doi.org/10.1002/cepa.299.
  54. Hechler, O., Braun, M., Hauf, G. and Kuhlmann, U. (2011). "CoSFB-the composite slim-floor beam", Proceedings of the 6th European Conference on Steel and Composite Structures, Budapest, Hungary.
  55. Hechler, O., Braun, M., Obiala, R., Kuhlmann, U., Eggert, F. and Hauf, G. (2013), "CoSFB-Composite Slim-Floor Beam: Experimental Test Campaign and Evaluation", Proceedings of the Composite Construction in Steel and Concrete VII, North Queensland, Australia. https://doi.org/10.1061/9780784479735.013.
  56. Hechler, O., Braun, M., Obiala, R., Kuhlmann, U., Eggert, F. and Hauf, G. (2013), "CoSFB-Composite Slim-Floor Beam: Experimental Test Campaign and Evaluation", Proceedings of the Composite Construction VII, Australia.
  57. Hegger, J., Roggendorf, T. and Kerkeni, N. (2009), "Shear capacity of prestressed hollow core slabs in slim floor constructions", Eng. Struct., 31(2), 551-559. https://doi.org/10.1016/j.engstruct.2008.10.006.
  58. Hicks, S. (2003), "Current trends in modern floor construction", New Steel Constr., 11(1), 32-33.
  59. Hicks, S. and Peltonen, S. (2013), "Vibration performance of composite floors using slim floor beams", Proceedings of the Composite Construction in Steel and Concrete VII. 185-198,
  60. Hosseinpour, E., Baharom, S., Badaruzzaman, W.H.W. and Al Zand, A.W. (2018), "Push-out test on the web opening shear connector for a slim-floor steel beam: Experimental and analytical study", Eng. Struct., 163, 137-152. https://doi.org/10.1016/j.engstruct.2018.02.047.
  61. Hosseinpour, E., Baharom, S., Badaruzzaman, W.H.W., Shariati, M. and Jalali, A. (2018), "Direct shear behavior of concrete filled hollow steel tube shear connector for slim-floor steel beams", Steel Compos. Struct., 26(4), 485-499. https://doi.org/10.12989/scs.2018.26.4.485.
  62. Hsu, C.-T.T., Punurai, S., Punurai, W. and Majdi, Y. (2014), "New composite beams having cold-formed steel joists and concrete slab", Eng. Struct., 71, 187-200. https://doi.org/10.1016/j.engstruct.2014.04.011
  63. Huo, B. (2012), Experimental and analytical study of the shear transfer in composite shallow cellular floor beams, City University London.
  64. Huo, B.Y. and D'Mello, C.A. (2013), "Push-out tests and analytical study of shear transfer mechanisms in composite shallow cellular floor beams", J. Constr. Steel Res., 88, 191-205, https://doi.org/10.1016/j.jcsr.2013.05.007.
  65. ISO, I. (1999), "834: Fire resistance tests-elements of building construction", Proceedings of the International Organization for Standardization, Geneva, Switzerland.
  66. Jiang, Y.C., Hu, X.M. and Yan, H.D. (2020), "Experimental Investigation on Bending Performance of Steel-Concrete Composite Slim Beams", Key Eng. Mater., https://doi.org/10.4028/www.scientific.net/KEM.853.182.
  67. Ju, X. and Zeng, Z. (2015), "Study on uplift performance of stud connector in steel-concrete composite structures", Steel Compos. Struct., 18(5), 1279-1290. https://doi.org/10.12989/scs.2015.18.5.1279.
  68. Ju, Y.-K., Chun, S., Kim, D., Kim, D., Kim, S. and Chung, K. (2003), "Structural Performance of i-Tech Composite Beam Composed of Steel With Web Openings", CIB Report, 411-418.
  69. Ju, Y.K., Chun, S.C. and Kim, S.D. (2009), "Flexural test of a composite beam using asymmetric steel section with web openings", J. Struct. Eng., 135(4), 448-458. https://doi.org/10.1061/(asce)0733-9445(2009)135:4(448)
  70. Ju, Y.K., Kim, D.H. and Kim, S.D. (2005), "Experimental assessment of the shear strength of an asymmetric steel composite beam with web openings", Can. J. Civil Eng., 32(2), 314-328. https://doi.org/10.1139/l04-094
  71. Ju, Y.K., Kim, J.Y. and Kim, S.D. (2007), "Experimental evaluation of new concrete encased steel composite beam to steel column joint", J. Struct. Eng., 133(4), 519-529. https://doi.org/10.1061/(asce)0733-9445(2007)133:4(519)
  72. Kang, H., Lee, D.H., Hwang, J.H., Oh, J.Y., Kim, K.S. and Kim, H.Y. (2016), "Structural performance of prestressed composite members with corrugated webs exposed to fire", Fire Technol., 52(6), 1957-1981. https://doi.org/10.1007/s10694-015-0521-y.
  73. Kansinally, R. and Tsavdaridis, K.D. (2015). "Vibration response of USFB composite floors", Proceedings of the Nordic Steel Construction Conference.
  74. Karimi, A. and Nematzadeh, M. (2020), "Axial compressive performance of steel tube columns filled with steel fiber-reinforced high strength concrete containing tire aggregate after exposure to high temperatures", Eng. Struct., 219, 110608. https://doi.org/10.1016/j.engstruct.2020.110608.
  75. Kataoka, M.N., Friedrich, J.T. and El Debs, A.L.H. (2017), "Experimental investigation of longitudinal shear behavior for composite floor slab", Steel Compos. Struct., 23(3), 351-362. https://doi.org/10.12989/scs.2017.23.3.351.
  76. Kim, H.J., Kim, H.Y. and Park, S.Y. (2011), "An experimental study on fire resistance of Slim Floor beam", Appl. Mech. Mater., 82, 752-757. https://doi.org/10.4028/www.scientific.net/AMM.82.752.
  77. Kim, H.J., Kim, H.Y. and Park, S.Y. (2012), "An Experimental Study on Fire Resistance Performance and Evaluation of Asymmetric Slim Floor Beam", Advanced Materials Research. 446 1103-1108, https://doi.org/10.4028/www.scientific.net/AMR.446-449.1103.
  78. Kim, M.H., Kim, S.D. and Kang, S.D. (2007), "Behavior of ITECH composite beam in fire-experimental study", Fire Sci. Technol., 26(2), 51-59. https://doi.org/10.3210/fst.26.51.
  79. Kim, S.D., Kim, D.H., Chung, K.R., Yoon, S.W., Kang, S.W., Chun, S.C., Lee, Y.K. and Ju, Y.K. (2004), "Experimental Assessment of Floor Vibration Using iTECH Composite", CTBUH, Seoul.
  80. Kim, W.B. and Choi, B.J. (2011), "Shear strength of connections between open and closed steel-concrete composite sandwich structures", Steel Compos. Struct., 11(2), 169-181. https://doi.org/10.12989/scs.2011.11.2.169.
  81. Lam, D. (1998), Composite steel beams using precast concrete hollow core floor slabs, University of Nottingham.
  82. Lam, D. (2007), "Capacities of headed stud shear connectors in composite steel beams with precast hollowcore slabs", J. Constr. Steel Res., 63(9), 1160-1174. https://doi.org/10.1016/j.jcsr.2006.11.012
  83. Lam, D., Dai, X., Kuhlmann, U., Raichle, J. and Braun, M. (2015), "Slim-floor construction-design for ultimate limit state", Steel Constr., 8(2), 79-84. https://doi.org/10.1002/stco.201510019.
  84. Lam, D., Elliott, K. and Nethercot, D. (2000), "Experiments on composite steel beams with precast concrete hollow core floor slabs", Structures and Buildings.
  85. Lawson, M., Beguin, P., Obiala, R. and Braun, M. (2015), "Slim-floor construction using hollow-core and composite decking systems", Steel Constr., 8(2), 85-89. https://doi.org/10.1002/stco.201510018.
  86. Lawson, R., Bode, H., Brekelmans, J., Wright, P. and Mullett, D. (1999), "Slimflor and slimdek construction: European developments".
  87. Lawson, R., Bode, H., Brekelmans, J., Wright, P. and Mullett, D. (1999), "Slimflor and slimdek construction: European developments", TNO Repository.
  88. Lawson, R.M. (2001), "Fire engineering design of steel and composite buildings", J. Constr. Steel Res., 57(12), 1233-1247. https://doi.org/10.1016/S0143-974X(01)00051-7.
  89. Lawson, R.M., Mullett, D.L. and Rackham, J. (1997), Design of asymmetric slimflor beams using deep composite decking, Steel Construction Institute, Berkshire, U.K.
  90. Leskela, M.V., Peltonen, S., Iliopoulos, A. and Kiriakopoulos, P. (2014). "Numerical and experimental investigations on the vertical shear resistance of boxed steel cross-sections with concrete infill (Deltabeams)", Proceedings of the 7th European Conference on Steel and Composite Structures, Naples, Italy.
  91. Liew, J., Chua, Y. and Dai, Z. (2019). "Steel concrete composite systems for modular construction of high-rise buildings", Structures.
  92. Limazie, T. and Chen, S. (2015), "Numerical procedure for nonlinear behavior analysis of composite slim floor beams", J. Constr. Steel Res., 106, 209-219. https://doi.org/10.1016/j.jcsr.2014.12.015.
  93. Limazie, T. and Chen, S. (2016), "FE modeling and numerical investigation of shallow cellular composite floor beams", J. Constr. Steel Res., 119, 190-201. https://doi.org/10.1016/j.jcsr.2015.12.022.
  94. Liu, Y., Guo, L., Qu, B. and Zhang, S. (2017), "Experimental investigation on the flexural behavior of steel-concrete composite beams with U-shaped steel girders and angle connectors", Eng. Struct., 131, 492-502. https://doi.org/10.1016/j.engstruct.2016.10.037.
  95. Lu, X. and Makelainen, P. (1996), "Slim floor developments in Sweden and Finland", Struct. Eng. Int., 6(2), 127-129. https://doi.org/10.2749/101686696780495789.
  96. Ma, Z. and Makelainen, P. (2000), "Behavior of composite slim floor structures in fire", J. Struct. Eng., 126(7), 830-837. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:7(830).
  97. Ma, Z. and Makelainen, P. (2006), "Structural behaviour of composite slim floor frames in fire conditions", J. Constr. Steel Res., 62(12), 1282-1289, https://doi.org/10.1016/j.jcsr.2006.04.026.
  98. Makelainen, P. and Ma, Z. (2000), "Fire resistance of composite slim floor beams", J. Constr. Steel Res., 54(3), 345-363. https://doi.org/10.1016/S0143-974X(99)00059-0.
  99. Maraveas, C. (2014). "Numerical analysis of DELTA composite beams in fire", Proceedings of the 7th European conference on steel and composite structures-EUROSTEEL.
  100. Maraveas, C. (2014). "Numerical analysis of DELTA composite beams in fire", Proceedings of the 7th European Conference on Steel and Composite Structures, Naples, Italy, http://www.maraveas.gr/media/38340/b13.pdf.
  101. Maraveas, C. (2017), "Fire resistance of DELTABEAM® composite beams: a numerical investigation", J. Struct.Fire Eng., 8(4), 338-353. https://doi.org/10.1108/JSFE-05-2016-0003.
  102. Maraveas, C. (2018), "Fire resistance of delta composite beams: A numerical investigation", J. Struct. Fire Eng., https://doi.org/10.1108/jsfe-05-2016-0003.
  103. Maraveas, C., Fasoulakis, Z. and Tsavdaridis, K. (2017). "Fire resistance of axially restrained and partially unprotected Ultra Shallow Floor Beams (USFB®) and DELTABEAM® composite beams", Proceedings of the Applications of Structural Fire Engineering, Prague, Czech. http://hdl.handle.net/2268/215370.
  104. Maraveas, C., Fasoulakis, Z. and Tsavdaridis, K. (2017), "Fire resistance of axially restrained and partially unprotected Ultra Shallow Floor Beams (USFB®) and DELTABEAM® composite beams", Proceedings of the Applications of Structural Fire Engineering. http://hdl.handle.net/2268/215370.
  105. Maraveas, C., Swailes, T. and Wang, Y. (2012), "A detailed methodology for the finite element analysis of asymmetric slim floor beams in fire", Steel Constr., 5(3), 191-198. https://doi.org/10.1002/stco.201210024.
  106. Maraveas, C., Tsavdaridis, K. and Nadjai, A. (2017), "Fire resistance of unprotected ultra shallow floor beams (USFB): A numerical investigation", Fire Technol., 53(2), 609-627. https://doi.org/10.1007/s10694-016-0583-5.
  107. Matos, J.C., Valente, I.B., Cruz, P.J. and Moreira, V.N. (2016), "Probabilistic-based assessment of composite steel-concrete structures through an innovative framework", Steel Compos. Struct., 20(6), 1345-1368. https://doi.org/10.12989/scs.2016.20.6.1345.
  108. Mirza, O. and Kaewunruen, S. (2018), "Influence of shear bolt connections on modular precast steel-concrete composites for track support structures", Steel Compos. Struct., 27, 647-659. https://doi.org/10.12989/scs.2018.27.5.647.
  109. Moore, D.B. (2003), Composite Construction, CRC Press
  110. Mullett, D.L. (1992), Slim floor design and construction, Steel Construction Institute, Berkshire, U.K.
  111. Muttashar, M., Manalo, A., Karunasena, W. and Lokuge, W. (2017), "Flexural behaviour of multi-celled GFRP composite beams with concrete infill: Experiment and theoretical analysis", Compos. Struct., 159, 21-33. https://doi.org/10.1016/j.compstruct.2016.09.049.
  112. Nematzadeh, M., Fazli, S. and Hajirasouliha, I. (2017a), "Experimental study and calculation of laterally-prestressed confined concrete columns", Steel Compos. Struct., 23(5), 517-527. https://doi.org/10.12989/scs.2017.23.5.517.
  113. Nematzadeh, M., Hajirasouliha, I., Haghinejad, A. and Naghipour, M. (2017b), "Compressive behaviour of circular steel tubeconfined concrete stub columns with active and passive confinement", Steel Compos. Struct., 24(3), 323-337. https://doi.org/10.12989/scs.2017.24.3.323.
  114. Nematzadeh, M., Karimi, A. and Gholampour, A. (2020a), "Pre- and post-heating behavior of concrete-filled steel tube stub columns containing steel fiber and tire rubber", Structures, 27, 2346-2364. https://doi.org/10.1016/j.istruc.2020.07.034.
  115. Nematzadeh, M., Memarzadeh, A. and Karimi, A. (2020b), "Post-fire elastic modulus of rubberized fiber-reinforced concrete-filled steel tubular stub columns: Experimental and theoretical study", J. Constr. Steel Res., 175, 106310. https://doi.org/10.1016/j.jcsr.2020.106310.
  116. Nematzadeh, M., Shahmansouri, A.A. and Zabihi, R. (2021), "Innovative models for predicting post-fire bond behavior of steel rebar embedded in steel fiber reinforced rubberized concrete using soft computing methods", Structures, 31 1141-1162. https://doi.org/10.1016/j.istruc.2021.02.015.
  117. Newman, G. (1995), "Fire resistance of slim floor beams", J. Constr. Steel Res., 33(1-2), 87-100. https://doi.org/10.1016/0143-974X(94)00016-B.
  118. Park, S., Kim, H., Kim, H. and Hong, K. (2011), "Fire resistance of the Korean asymmetric Slim Floor beam depending on load ratio", J. Asian Architect. Build. Eng., 10(2), 413-420. https://doi.org/10.3130/jaabe.10.413.
  119. Peltonen, S. and Leskela, M. (2006), "Connection behaviour of a concrete dowel in a circular web hole of a steel beam", Composite Construction in Steel and Concrete V.
  120. Peltonen, S. and Leskela, M.V. (2006), Connection behaviour of a concrete dowel in a circular web hole of a steel beam,
  121. Pohlers, D., Beyer, A., Koczan, D., Wilhelm, T., Thiesen, H.J. and Kinne, R.W. (2007), "Constitutive upregulation of the transforming growth factor-β pathway in rheumatoid arthritis synovial fibroblasts", Arthritis Res. Therapy. 9(3), R59. https://doi.org/10.1186/ar2217
  122. Pries, A.M., Rehman, A.M., Filteau, S., Sharma, N., Upadhyay, A. and Ferguson, E.L. (2019), "Unhealthy snack food and beverage consumption is associated with lower dietary adequacy and length-for-age z-scores among 12-23-month-olds in Kathmandu Valley, Nepal", J. Nutrition, 149(10), 1843-1851. https://doi.org/10.1093/jn/nxz140
  123. Rackham, J., Hicks, S. and Newman, G.M. (2006), Design of asymmetric slimflor beams with precast concrete slabs, Steel Construction Institute, Ascot, UK.
  124. Romero, M.L., Albero, V., Espinos, A. and Hospitaler, A. (2019), "Fire design of slim-floor beams", Stahlbau, 88(7), 665-674. https://doi.org/10.1002/stab.201900030.
  125. Romero, M.L., Cajot, L.G., Conan, Y. and Braun, M. (2015), "Fire design methods for slim-floor structures", Steel Construction. 8(2), 102-109, https://doi.org/10.1002/stco.201510012.
  126. Romero, M.L., Espinos, A., Lapuebla-Ferri, A., Albero, V. and Hospitaler, A. (2020), "Recent developments and fire design provisions for CFST columns and slim-floor beams", J. Constr. Steel Res., 172, 106159. https://doi.org/10.1016/j.jcsr.2020.106159
  127. Schaumann, P. and Hothan, S. (2002), "Fire design of a new slim floor beam system using FEM-analysis", Proceeding of the 2nd International Workshop "Structures in Fire", Christchurch.
  128. Schaumann, P. and Kirsch, T. (2011). "Fracture simulation in a steel connection in fire", Proceeding of the Applications of Structural Fire Engineering, Prague, Czech,
  129. Sha, W. and Chan, T. (2002), Intumescent fire protection coating thickness for shallow floor beams, Hong Kong, China.
  130. Sha, W. and Lau, N. (2001), Temperature Development During Fire in Slim Floor Beams Protected with Intumescent Coating, Elsevier
  131. Sheehan, T., Dai, X., Yang, J., Zhou, K. and Lam, D. (2018). "Flexural behaviour of composite slim floor beams", Proceeding of the 12th International Conference on Advances in Steel-Concrete Composite Structures, Valencia, Spain. https://doi.org/10.4995/ASCCS2018.2018.6963.
  132. Simoes da Silva, L., Santiago, A., Real, P.V. and Moore, D. (2005), "Behaviour of steel joints under fire loading", Steel Compos. Struct., 5(6), 485-513, https://doi.org/10.12989/scs.2005.5.6.485.
  133. Stahlanwendung eV, S. (2004). "P534: Searching effective ways to make the steel framed residential apartment more competitive", Dusseldorf.
  134. Thor, J. (1991), Fire resistant steel beam coating with concrete, European Patent Office. Paris, France.
  135. Tondini, N., Thauvoye, C., Hanus, F. and Vassart, O. (2019), "Development of an analytical model to predict the radiative heat flux to a vertical element due to a localised fire", Fire Saf. J., https://doi.org/10.1016/j.firesaf.2019.03.001.
  136. Tsadarides, K.-D. (2010), Structural performance of perforated steel beams with novel web openings and with partial concrete encasement, City University London
  137. Tsavdaridis, K.D., D'Mello, C. and Huo, B.Y. (2009). "Shear capacity of perforated concrete-steel ultra shallow floor beams (USFB)", Proceedings of the 6th National Concrete Conference.
  138. Tsavdaridis, K.-D., D'Mello, C. and Huo, B.Y. (2009). "Computational study modelling the experimental work conducted on the shear capacity of perforated concrete-steel Ultra Shallow Floor Beams (USFB)", Proceedings of 16th Hellenic Concrete Conference.
  139. Tsavdaridis, K., D'Mello, C. and Hawes, M. (2009). "Experimental study of ultra shallow floor beams (USFB) with perforated steel sections", Nordic Steel 09.
  140. Tsavdaridis, K.D. and D'Mello, C. (2012), "Vierendeel bending study of perforated steel beams with various novel web opening shapes through nonlinear finite-element analyses", J. Struct. Eng., 138(10), 1214-1230. https://doi.org/10.1061/(asce)st.1943-541x.0000562.
  141. Tsavdaridis, K.D., D'Mello, C. and Huo, B.Y. (2009), "Computational study modelling the experimental work conducted on the shear capacity of perforated concrete-steel Ultra Shallow Floor Beams (USFB)", Proceedings of the 16th Hellenic Concrete Conference, Paphos, Cyprus.
  142. Tsavdaridis, K.D., D'Mello, C. and Huo, B.Y. (2013), "Experimental and computational study of the vertical shear behaviour of partially encased perforated steel beams", Eng. Struct., 56, 805-822, https://doi.org/10.1016/j.engstruct.2013.04.025.
  143. Tsavdaridis, K.D. and Galiatsatos, G. (2015), "Assessment of cellular beams with transverse stiffeners and closely spaced web openings", Thin-Wall. Struct.. 94, 636-650, https://doi.org/10.1016/j.tws.2015.05.005
  144. Tsavdaridis, K.D. and Giaralis, A. (2011), "Derivation of dynamic properties of steel perforated Ultra Shallow Floor Beams (USFBTD) via Finite Element modal analysis and experimental verification", Proceedings of the 7th National Conference on Steel Structures,
  145. Wald, F., Simoes da Silva, L., Moore, D., Lennon, T., Chladna, M., Santiago, A., Benes, M. and Borges, L. (2006), "Experimental behaviour of a steel structure under natural fire", Fire Saf. J., 41(7), 509-522. https://doi.org/10.1016/j.firesaf.2006.05.006.
  146. Wald, F., Simoes da Silva, L., Moore, D., Lennon, T., Chladna, M., Santiago, A., Benes, M. and Borges, L. (2005), "Experimental behaviour of a steel structure under natural fire", New Steel Constr.. 13(3), 24-27.
  147. Wang, Y. (2005), "Performance of steel-concrete composite structures in fire", Prog. Struct. Eng. Mater., 7(2), 86-102. https://doi.org/10.1002/pse.197.
  148. Wang, Y., Burgess, I., Wald, F. and Gillie, M. (2012), Performance-based fire engineering of structures, CRC press
  149. Wang, Y. and Moore, D. (1995), "Steel frames in fire: analysis", Eng. Struct., 17(6), 462-472. https://doi.org/10.1016/0141-0296(95)00047-B.
  150. Wang, Y., Yang, L., Shi, Y. and Zhang, R. (2009), "Loading capacity of composite slim frame beams", J. Constr. Steel Res., 65(3), 650-661. https://doi.org/10.1016/j.jcsr.2008.05.012.
  151. Yang, J., Chen, H., Hu, S. and Gan, V.J. (2019), "Experimental studies on the flexural behaviour of steel-concrete composite beams with transverse and longitudinal hidden girders", Eng. Struct., 179, 583-594. https://doi.org/10.1016/j.engstruct.2018.11.025.
  152. Yu Huo, B., D'mello, C. and Tsavdaridis, K.D. (2010), "Experimental and analytical study of push-out shear tests in ultra shallow floor beams", IABSE Symposium Report.
  153. Zaharia, R., Duma, D.M., Vassart, O., Gernay, T. and Franssen, J.-M. (2011). "Simplified fire design for Slim Floor beams", Proceeding of the 6th European Conference on Steel and Composite Structures, Budapest, Hungary. http://hdl.handle.net/2268/129533.
  154. Zaharia, R., Duma, D.M., Vassart, O., Gernay, T. and Franssen, J.-M. (2011). "Simplified method for the temperature distribution in slim floor beams", Proceeding of the International Conference Applications of Structural Fire Engineering, http://hdl.handle.net/2268/92244.
  155. Zaharia, R. and Franssen, J.M. (2012), "Simple equations for the calculation of the temperature within the cross-section of slim floor beams under ISO Fire", Steel Compos.Struct., 13(2), 171-185, https://doi.org/10.12989/scs.2012.13.2.171.
  156. Zaharia, R. and Vassart, O. (2012). "Fire analysis of slim floor systems using Cofradal floor units", Proceeding of the Advances on Steel Concrete Composite and Hybrid Structures, Singapure, Singapure, http://doi.org/10.3850/978-981-07-2615-7_206.
  157. Zaharia, R. and Vassart, O. (2012), "Fire analysis of slim floor systems using Cofradal floor units", Proceeding of the International Conference on Advances on Steel Concrete Composite and Hybrid Structures-ASCCS.
  158. Zahrai, S.M. (2015), "Experimental study of typical and retrofitted jack arch slabs in a single story 3D steel building", Int. Journal Civil Eng., 13(3), 278-288,