DOI QR코드

DOI QR Code

Growth at Heading Stage of Rice Affected by Temperature and Assessment of the Target Growth Applicable to North Korea for Breeding in South Korea

기온에 따른 벼 출수기 생육 반응 및 남한에서 북한 적응 품종 육성을 위한 출수기 목표 생장량 추정

  • Yang, Woonho (Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Choi, Jong-Seo (Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Lee, Dae-Woo (Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Kang, Shingu (Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Lee, Seuk-ki (Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Chae, Mi-Jin (Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration)
  • 양운호 (농촌진흥청 국립식량과학원 재배환경과) ;
  • 최종서 (농촌진흥청 국립식량과학원 재배환경과) ;
  • 이대우 (농촌진흥청 국립식량과학원 재배환경과) ;
  • 강신구 (농촌진흥청 국립식량과학원 재배환경과) ;
  • 이석기 (농촌진흥청 국립식량과학원 재배환경과) ;
  • 채미진 (농촌진흥청 국립식량과학원 재배환경과)
  • Received : 2021.03.19
  • Accepted : 2021.06.08
  • Published : 2021.06.30

Abstract

Field studies at Suwon, Cheorwon, and Jinbu were carried out to determine the relationship between mean temperature from transplanting to heading (MT) and growth at heading stage of rice. P lant height (P H) and dry weight (DW) at heading stage were significantly correlated with MT, showing second degree polynomials. The optimal temperatures for PH and DW were 23.2 ℃ and 22.8 ℃, respectively. Little differences in rice growth among soils collected from the experimental sites and the temperature-response in a phytotron study supported that MT was the main determinant of the growth shown in the field study. Though number of days to heading increased as MT decreased, cumulative temperatures (CT) affected by sites and MT for given varieties were fairly constant. When applying specific CT for each of the varieties to the temperature in North Korea, (1) five regions (Kaesong, Haeju, Sariwon, Nampo, Pyongyang) were suitable for early to mid-maturing varieties and (2) 14 regions (Yongyon, Singye, Anju, Kusong, Sinuiju, Changjon, Wonsan, Hamhung, Pyonggang, Yangdok, Huichon, Supung, Sinpo, Kanggye) were suitable only for early-maturing varieties. In (1) regions, the similar extent of growth with that in Suwon could be achieved when mid-maturing varieties grown in Suwon are cultivated. Among (2) regions, early-maturing varieties are expected to demonstrate the similar extent of growth with that in Cheorwon in 9 regions except Hamhung, Kanggye, Pyonggang, Yangdok, and Sinpo. For Hamhung and Kanggye, the target PH was assessed as 4cm higher than that shown in Cheorwon. P lant height of 8-14cm and DW of 2-4g per hill greater than those shown in Cheorwon were the target growth for P yonggang, Yangdok, and Sinpo to attain the similar amount of growth with that in Cheorwon. It is suggested that rice varieties for North Korea could be bred by adjusting the target growth at the breeding sites in South Korea.

본 연구는 북한 적응 벼 품종을 남한의 유사 기후 지역에서 육성하는 경우, 북한 지역별로 육성모지 수준의 생장을 위한 출수기 목표 생장량을 추정하기 위하여 기온이 서로 다른 지역(수원, 철원, 진부)에서 6품종의 출수기 벼 생장 반응을 검정하고 북한 지역의 기온에 적용하여 분석하였다. 시험지역, 연도를 합하여 품종의 최고값 대비 지수 성적을 분석하였을 때, 이앙기-출수기 기간의 평균기온과 출수기 초장 및 건물중은 고도로 유의한 2차 함수식의 관계를 보였으며, 초장 최고값은 23.2 ℃, 건물중 최고값은 22.8 ℃에서 나타났다. 각각의 품종에서 이앙기-출수기 평균기온이 낮아짐에 따라 출수 소요일수는 증가하였으나, 출수소요 적산온도는 지역간 차이가 적고 비교적 일정하였다. 시험지역의 토양 특성 차이에 의한 출수기 벼 생육 차이는 적었으며, 시험지역의 기온 처리에 의한 출수기 건물중은 현지시험에서와 같은 양상이었다. 현지시험에서 나타난 품종별 출수소요 적산온도를 북한 지역의 평균기온과 안전 출수 한계기에 대입하여 비교한 결과, 5지역(개성, 해주, 사리원, 남포, 평양)은 중생종까지, 14지역(용연, 신계, 안주, 구성, 신의주, 장전, 원산, 함흥, 평강, 양덕, 희천, 수풍, 신포, 강계)은 조생종만 재배 가능하며, 4지역(김책, 청진, 선봉, 중강)은 출수가 가장 빨랐던 조품도 적응하지 못하는 것으로 분석되었다. 북한의 중생종 재배 가능 5지역은 이앙기안전 출수 한계기 평균기온이 수원보다 0.7~1.2 ℃ 낮았으며, 이들 지역에서는 수원에서 육성한 중생종을 동일한 방법으로 재배하면 수원과 비슷한 수준의 출수기 생장량을 보이는 것으로 분석되었다. 조생종 재배만 가능한 14지역 중 9지역(용연, 신계, 안주, 구성, 신의주, 장전, 원산, 희천, 수풍)의 이앙기-안전 출수 한계기 평균기온은 22.2~23.0 ℃로 철원의 22.9 ℃와 차이가 크지 않았으며, 철원에서 육성한 조생종을 재배하면 철원과 비슷한 수준의 출수기 생장량을 나타내는 것으로 분석되었다. 철원과 같은 수준의 조생종 출수기 생장량 확보를 위해서는 함흥과 강계의 경우 철원에서 나타나는 초장보다 4cm 긴 품종, 평강과 양덕 및 신포의 경우에는 초장은 8~14cm, 주당 건물중은 2~4g 큰 품종을 육성해야 하는 것으로 분석되었다. 종합적으로, 북한 적응 품종을 남한의 유사 기후 지역에서 육성하는 경우, 중생종 재배 가능 지역은 수원, 조생종 재배 가능 지역 중 철원과 기온이 비슷한 지역은 철원에서 육성한 품종을 재배하면 출수기 생장량이 비슷하며, 철원보다 기온이 낮은 지역에 대하여는 철원에서 나타나는 것보다 더 큰 출수기 생장량을 보이는 품종을 육성해야 할 것으로 판단되었다.

Keywords

Acknowledgement

본 논문은 농촌진흥청 연구사업(연구개발과제명: 기후변화 대응 북한지역 식량작물 재배적지 선정, 연구번호: PJ014806012021)의 지원에 의해 이루어진 것임.

References

  1. Ahn, S., and V. S. Vergara, 1969: Studies on responses of the rice plant to photoperiod. III. Response of Korean varieties. Korean Journal of Crop Science 5, 45-59.
  2. Choe, J. W., 1998: Cooperation measures for agricultural infrastructure development in North Korea. Proceedings Korean Society of Crop Science and Korean Breeding Science for 50th Anniversary GSNU, 134-158. (in Korean with English abstract)
  3. Choi, K.-J., J.-I. Lee, N.-J. Chung, W.-H. Yang, and J.-C. Shin, 2006: Effects of temperature and day-length on heading habit of recently developed Korean rice cultivars. Korean Journal of Crop Science 51(1), 41-47.
  4. FAO (Food and Agricultural Organization of the United Nations), 2017: GIEWS: The Democratic People's Republic of Korea. Prolonged weather threatens the 2017 main season food crop production (July 2017), 12pp.
  5. FAO (Food and Agricultural Organization of the United Nations) and WFP (World Food Programme), 2019: FAO/WFP joint rapid food security assessment, Democratic People's Republic of Korea, 46pp.
  6. Jeong, E. G., J. D. Yea, M. K. Baek, H. P. Moon, and K. M. Yoon, 2000: Cold tolerance in rice varieties of North Korea. Korean Journal of Breeding 32(1), 45-50. (in Korean with English abstract)
  7. Kim, K. C., 1983: Studies on the effect of temperature during the reduction division and the grain filling stage in rice plants. Korean Journal of Crop Science 28(1), 58-75.
  8. Kim, Y. H., H. D. Kim, S. W. Han, J. Y. Choi, J. M. Koo, U. Chung, J. Y. Kim, and J. I. Yun, 2002: Using spatial data and crop growth modeling to predict performance of South Korean rice varieties grown in western coastal plains in North Korea. Korean Journal of Agriculture and Forest Meteorology 4(4), 224-236. (in Korean with English abstract)
  9. KMA (Korea Meteorological Administration), 2021: http://data.kma.go.kr/cmmn/main.do (2021. 1. 15).
  10. KOSIS (Korean Statistical Information Service). 2018: http://kosis.kr/statisticsList/statisticsListIndex.do?menuId=M_02_02&vwcd=MT_BUKHAN&parmTabId=M_02_02#SelectStatsBoxDiv (2018. 3. 20).
  11. Krishnan, P., B. Ramakrishnan, K. R. Reddy, and V. R. Reddy, 2011: High-temperature effects on rice growth, yield, and grain quality. Advances in Agronomy 111, 87-206. https://doi.org/10.1016/B978-0-12-387689-8.00004-7
  12. Lee, C. K., B. W. Lee, Y. H. Yoon, and J. C. Shin, 2001: Temperature response and prediction model of leaf appearance rate in rice. Korean Journal of Crop Science 46(3), 202-208. (in Korean with English abstract)
  13. Moon, H.-P., 2019: Handbook of rice varieties adaptable to North Korea. National Institute of Crop Science and Institute of Northern Agricultural Research, 127pp.
  14. Park, J.-S., S.-W. Han, Y.-C. Ju, and Y.-.D. Rho, 1999: Nitrogen response on growth and yield in rice varieties of North Korea and China. Korean Journal of International Agriculture, 11(4), 363-371. (in Korean with English abstract)
  15. RDA (Rural Development Administration), 2017: Quality rice production technologies. Rural Development Administration, 461pp.
  16. Tanaka, M., 1950: Practical studies on the injuries of cool weather in rice plant. II. Temperature and heading date need to full development of rice grains. Japanese Journal of Crop Science 19(1-2), 57-61. (in Japanese with English abstract) https://doi.org/10.1626/jcs.19.57
  17. Vergara, B. S., and T. T. Chang, 1985: The flowering response of the rice plant to photoperiod. A review of the literature. 4th Ed. The International Rice Research Institute, Philippines, 61pp.
  18. Yang, W., J.-H. Park, J.-S. Choi, S. Kang, and S. Kim, 2019a: Yield characteristics and related agronomic traits affected by the transplanting date in early maturing varieties of rice in the central plain area of Korea. Korean Journal of Crop Science 64(3), 165-175. (in Korean with English abstract)
  19. Yang, W., J.-H. Park, J.-S. Choi, T. H. Noh, and S. Kim, 2019b: Rice cultivation model to improve productivity in North Korea. National Institute of Crop Science, Rural Development Administration, 143pp.
  20. Yang, W., S. Kang, S. Kim, J.-S. Choi, and J.-H. Park, 2018a: Assessment of the safe rice cropping period based on temperature data in different regions of North Korea. Korean Journal of Agriculture and Forest Meteorology 20(2), 190-204. (in Korean with English abstract)
  21. Yang, W., S. Kang, S. Kim, J.-S. Choi, and J.-H. Park, 2018b: Temperature data-based assessment of the marginal heading dates and the growth duration of rice in the regions of North Korea. Korean Journal of Agriculture and Forest Meteorology 20(4), 284-295. (in Korean with English abstract)
  22. Yang, W., S. Kang, S. Kim, J.-S. Choi, and J.-H. Park, 2018c: The heading response of field-grown rice varieties of different ecotypes in Korea. Korean Journal of Crop Science 63(4), 282-293. (in Korean with English abstract) https://doi.org/10.7740/KJCS.2018.63.4.282
  23. Yang, W., S. Peng, and M. L. Dionisio-Sese, 2007: Morphological and photosynthetic responses of rice to low radiation. Korean Journal of Crop Science, 52(1): 1-11. (in Korean with English abstract).
  24. Yoon, S.-T., 2006: Agricultural status and view of North Korea. Korean Journal of International Agriculture 18(3), 175-182. (in Korean with English abstract)
  25. Yoshida, S., 1973: Effects of temperature on growth of the rice plant (Oryza sativa L.) in a controlled environment. Soil Science and Plant Nutrition 19(4), 299-310. https://doi.org/10.1080/00380768.1973.10432599
  26. Yoshida, S., 1981: Fundamentals of rice crop science. International Rice Research Institute, Philippines, 269pp.
  27. Yun, S.-H., and J.-T. Lee, 2001: Climate change impacts on optimum ripening periods of rice plant and its countermeasure in rice cultivation. Korean Journal of Agriculture and Forest Meteorology 3(1), 55-70. (in Korean with English abstract)
  28. Ziska, L. H., O. Namuco, T. Moya, and J. Quilang, 1997: Growth and yield response of field-grown tropical rice to increasing carbon dioxide and air temperature. Agronomy Journal 89, 45-53. https://doi.org/10.2134/agronj1997.00021962008900010007x