DOI QR코드

DOI QR Code

Direct and Diffuse Radiation Data in Naju During May 2019 to November 2020

농업적 활용을 위한 산란일사와 직달일사 관측 자료: 나주에서 2019년 5월부터 2020년 11월까지

  • Kim, Hyunki (Department of Applied Plant Science, Chonnam National University) ;
  • Moon, Hyun-Dong (Department of Applied Plant Science, Chonnam National University) ;
  • Cho, Yuna (Department of Applied Plant Science, Chonnam National University) ;
  • Sin, Seo-Ho (Food Crop Research Center, Agricultural Research & Extension Services) ;
  • Kim, Jong-Hyeon (Soldan, Co., Ltd) ;
  • Lee, Yang-Won (Department of Spatial Information Engineering, Pukyong National University) ;
  • Cho, Jaeil (Department of Applied Plant Science, Chonnam National University)
  • 김현기 (전남대학교 농업생명과학대학 응용식물학과) ;
  • 문현동 (전남대학교 농업생명과학대학 응용식물학과) ;
  • 조유나 (전남대학교 농업생명과학대학 응용식물학과) ;
  • 신서호 (전남농업기술원 식량작물연구소) ;
  • 김종현 ((주)쏠단) ;
  • 이양원 (부경대학교 환경해양대학 공간정보시스템공학과) ;
  • 조재일 (전남대학교 농업생명과학대학 응용식물학과)
  • Received : 2020.12.17
  • Accepted : 2021.06.21
  • Published : 2021.06.30

Abstract

Global solar radiation consists of direct and diffuse radiations. Both components are necessary for not only atmospheric science and solar energy domains but also agricultural applications. In this study, the data of direct and diffuse radiations are uploaded to Github. It was observed in Naju during May 2019 to November 2020. Using this data, the previous empirical equations using the relation between clearness index and diffuse ratio were validated. All coefficients of determination (R2) and RMSE were similar as 0.79~0.80 and 0.13~0.15. However, to get the lower RMSE, other non-linear approaches will be required with more observation data.

농업용 유리온실 또는 플라스틱하우스의 투과율을 산정하거나 영농형 태양광 하부 작물의 수광량을 평가할 때, 그리고 작물 군락 광합성량을 모의하거나 분석할 때에 직달과 산란 일사량을 구분하여 접근할 필요가 있다. 본고에서는 산란과 직달 일사량 자료의 농업적 활용 촉진을 위해 나주에서 2019년 5월부터 2020년 11월까지 측정한 자료를 공개하였다. 또한, 기존 연구에서 9개의 산란계수 추정식을 본 자료로 검증하였다. 추정식들 대부분은 결정계수(R2)가 0.79~0.80, RMSE가 0.13~0.15의 범위를 가졌다. 직달·산란 일사량의 농업적 활용을 높이기 위해 본 데이터뿐만 아니라 다양한 자료가 관측되고 공개되어야 할 것이고, 그에 따른 추정식도 정교화될 필요가 있다.

Keywords

Acknowledgement

이 논문은 기상청의 기상·지진 See·At 기술개발 연구(KMI2018-05510)의 지원을 받아 수행되었으며, 이에 감사드립니다.

References

  1. Chandrasekaran, J., and S. Kumar, 1994: Hourly diffuse fraction correlation at a tropical location. Solar Energy 53(6), 505-510. https://doi.org/10.1016/0038-092X(94)90130-T
  2. De Miguel, A., J. Bilbao, R. Aguiar, H. Kambezidis, and E. Negro, 2001: Diffuse solar irradiation model evaluation in the north Mediterranean belt area. Solar Energy 70(2), 143-153. https://doi.org/10.1016/s0038-092x(00)00135-3
  3. Erbs, D. G., S. A. Klein, and J. A. Duffie, 1982: Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation. Solar Energy 28(4), 293-302. https://doi.org/10.1016/0038-092X(82)90302-4
  4. Hawlader, M. N. A., 1984: Diffuse, global and extra-terrestrial solar radiation for Singapore. International Journal of Ambient Energy 5(1), 31-38. https://doi.org/10.1080/01430750.1984.9675406
  5. Hirose, T., 2005: Development of the Monsi-Saeki theory on canopy structure and function. Annals of Botany 95(3), 483-494. https://doi.org/10.1093/aob/mci047
  6. Karatasou, S., M. Santamouris, and V. Geros, 2003: Analysis of experimental data on diffuse solar radiation in Athens, Greece, for building applications. International Journal of Sustainable Energy 23(1-2), 1-11. https://doi.org/10.1080/0142591031000148597
  7. Koh, H. K., M. K. Kim, and Y. H. Kim, 1989: Analysis of direct and diffuse radiation in plastic greenhouse. The Magazine of Korean Solar Energy Society 9(3), 3013-3024. (in Korean with English abstract)
  8. Mercado, L. M., N. Bellouin, S. Sitch, O. Boucher, C. Huntingford, M. Wild, and P. M. Cox, 2009: Impact of changes in diffuse radiation on the global land carbon sink. Nature 458(7241), 1014-1017. https://doi.org/10.1038/nature07949
  9. Oliveira, A. P., J. F. Escobedo, A. J. Machado, and J. Soares, 2002: Correlation models of diffuse solar-radiation applied to the city of Sao Paulo, Brazil. Applied Energy 71(1), 59-73. https://doi.org/10.1016/S0306-2619(01)00040-X
  10. Orgill, J. F., and K. G. T. Hollands, 1977: Correlation equation for hourly diffuse radiation on a horizontal surface. Solar Energy 19(4), 357-359. https://doi.org/10.1016/0038-092X(77)90006-8
  11. Reindl, D. T., W. A. Beckman, and J. A. Duffie, 1990: Diffuse fraction correlations. Solar Energy 45(1), 1-7. https://doi.org/10.1016/0038-092X(90)90060-P
  12. Sayigh, A. A. M., 2012: Environmental Characteristics. Solar energy engineering: Processes and systems. S. A. Kalogirou (Eds.), Elsevier, 51-123pp.
  13. Soares, J., A. P. Oliveira, M. Z. Boznar, P. Mlakar, J. F. Escobedo, and A. J. Machado, 2004: Modeling hourly diffuse solar-radiation in the city of Sao Paulo using a neural-network technique. Applied Energy 79(2), 201-214. https://doi.org/10.1016/j.apenergy.2003.11.004
  14. Yoon, C., S. Choi, K.-N. An, J.-H. Ryu, H. Jeong, and J. Cho, 2019: Preliminary experiment of the change of insolation under solar panel mimic shading net. Korean Society of Agricultural and Forest Meteorology 21(4) 358-365. (in Korean with English abstract)