DOI QR코드

DOI QR Code

Photocatalytic Generated Oxygen Species Properties by Fullerene Modified Two-Dimensional MoS2 and Degradation of Ammonia Under Visible Light

  • Zou, Cong-Yang (Suzhou University of Science and Technology, Jiangsu Key Laboratory of Environmental Functional) ;
  • Meng, Ze-Da (Suzhou University of Science and Technology, Jiangsu Key Laboratory of Environmental Functional) ;
  • Zhao, Wei (Dept. of Materials Science and Engineering, Sichuan University of Science and Engineering) ;
  • Oh, Won-Chun (Department of Advanved Materials Science and Engineering, Hanseo University)
  • Received : 2020.12.02
  • Accepted : 2021.06.03
  • Published : 2021.06.27

Abstract

In this study, photocatalytic degradation of ammonia in petrochemical wastewater is investigated by solar light photocatalysis. Two-dimensional ultra-thin atomic layer structured MoS2 are synthesized via a simple hydrothermal method. We examine all prepared samples by means of physical techniques, such as SEM-EDX, HRTEM, FT-IR, BET, XRD, XPS, DRS and PL. And, we use fullerene modified MoS2 nanosheets to enhance the activity of photochemically generated oxygen (PGO) species. Surface area and pore volumes of the MoS2-fullerene samples significantly increase due to the existence of MoS2. And, PGO oxidation of MB, TBA and TMST, causing its concentration in aqueous solution to decrease, is confirmed by the results of PL. The generation of reactive oxygen species is detected through the oxidation reaction from 1,5-diphenyl carbazide (DPCI) to 1,5-diphenyl carbazone (DPCO). It is found that the photocurrent density and the PGO effect increase in the case with modified fullerene. The experimental results show that this heterogeneous catalyst has a degradation of 88.43% achieved through visible light irradiation. The product for the degradation of NH3 is identified as N2, but not NO2- or NO3-.

Keywords

Acknowledgement

The work was supported by the National Natural Science Foundation of China (Nos. 51502187), the JiangSu Collaborative Innovation Center of Technology and Material for Water Treatment, and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

References

  1. Y. Ma, Z. H. Wang, Y. L. Jia, L. N. Wang, M. Yang, Y. X. Qi and Y. P. Bi, Carbon, 114, 591 (2017). https://doi.org/10.1016/j.carbon.2016.12.043
  2. D.E. Meeroff, F. Bloetscher, D.V. Reddy, F. Gasnier, S. Jain, A. McBarnette and H. Hamaguchi, J. Hazard. Mater., 209-210, 299 (2012). https://doi.org/10.1016/j.jhazmat.2012.01.028
  3. Y. C. Lin, W. J. Zhang, J. K. Huang, K. K. Liu, Y. H. Lee, C. T. Liang, C. W. Chu and L. J. Li, Nanoscale, 4, 6637 (2012). https://doi.org/10.1039/c2nr31833d
  4. D. Q. Gao, M. S. Si, J. Y. Li, J. Zhang, Z. P. Zhang, Z. L. Yang and D. S. Xue, Nanoscale Res. Lett., 8, 129 (2013). https://doi.org/10.1186/1556-276X-8-129
  5. H. Li, Z. Y. Yin, Q. Y. He, H. Li, X. Huang, G. Lu, D. W. H. Fam, A. I. Y. Tok, Q. Zhang and H. Zhang, Small, 8, 63 (2012). https://doi.org/10.1002/smll.201101016
  6. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Chim, G. Galli and F. Wang, Nano Lett., 10, 1271 (2010). https://doi.org/10.1021/nl903868w
  7. C. Lee, H. Yan, L. E. Brus, L. E. Heinz, T. F. Hone, J. Hone and S. Ryu, ACS Nano, 4, 2695 (2010). https://doi.org/10.1021/nn1003937
  8. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti and A. Kis, Nature Nanotechnol., 6, 147 (2011). https://doi.org/10.1038/nnano.2010.279
  9. G. L. Frey, S. Elani, M. Homyonfer, Y. Feldman and R. Tenne, Phys. Rev. B., 57, 6666 (1998). https://doi.org/10.1103/PhysRevB.57.6666
  10. K. F. Mak, C. Lee, J. Hone, J. Shan and T. F. Heinz, Phys. Rev. Lett., 105, 136805 (2010). https://doi.org/10.1103/PhysRevLett.105.136805
  11. W. C. Oh, M. L. Chen, K. K. Y. Cho, C. L. Kim, Z. D. Meng and L. Zhu, Chinese J. Catal., 32, 1577 (2011). https://doi.org/10.1016/S1872-2067(10)60264-1
  12. Z. D. Meng, L. Zhu, J. G. Choi, M. L. Chen and W. C. Oh, J. Mater. Chem., 21, 7596 (2011). https://doi.org/10.1039/c1jm10301f
  13. D. Deutsch, J. Tarabek, M. Krause, P. Janda and L. Dunsch, Carbon, 42, 1137 (2004). https://doi.org/10.1016/j.carbon.2003.12.038
  14. J. J. Davis, H. A. O. Hill, A. Kurz, A. D. Leighton and A. Y. Safronov, J. Electroanal. Chem., 429, 7 (1997). https://doi.org/10.1016/S0022-0728(97)00068-5
  15. J. Wang, Y. W. Guo, B. Liu, X. D. Jin, L. J. Liu, R. Xu, Y. M. Kong and B. X. Wang, Ultrason. Sonochem., 18, 177 (2011). https://doi.org/10.1016/j.ultsonch.2010.05.002
  16. A. A. Halim, H. A. Aziz, M. A. Megat, K. Shah and M. Nordin, J. Hazard. Mater., 175, 960 (2010). https://doi.org/10.1016/j.jhazmat.2009.10.103
  17. Q. Li, T. J. Newberg, E. C. Walter, J. C. Hemminger and R. M. Pender, Nano Lett., 4, 277 (2004). https://doi.org/10.1021/nl035011f
  18. H. D. Wang, B. S. Xu, J. J. Liu, D. M. Zhuang, Mater. Chem. Phys., 91, 494 (2005). https://doi.org/10.1016/j.matchemphys.2004.12.039
  19. X. W. Zhang, M. H. Zhou and L. C. Lei, Carbon, 43, 1700 (2005). https://doi.org/10.1016/j.carbon.2005.02.013
  20. Q. Li, T. J. Newberg, E. C. Walter, J. C. Hemminger and R. M. Pender, Nano Lett., 4, 277 (2004). https://doi.org/10.1021/nl035011f
  21. C. Ataca, H. Sahin, E. Akturk and S. Ciraci, J. Phys. Chem. C., 115, 3934 (2011). https://doi.org/10.1021/jp1115146
  22. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli and F. Wang, Nano Lett., 10, 1271 (2010). https://doi.org/10.1021/nl903868w
  23. A. Martinez-Alonso, J. M. D. Tascon and E. J. Bottani, J. Phys. Chem. B, 105, 135 (2001). https://doi.org/10.1021/jp002047c
  24. R. Shidpour and M. Manteghian, Nanoscale., 2, 1429 (2010). https://doi.org/10.1039/b9nr00368a
  25. H. Pan and Y. W. Zhang, J. Mater. Chem., 22, 7280 (2012). https://doi.org/10.1039/c2jm15906f
  26. Y. F. Li, Z. Zhou, S. B. Zhang and Z. F. Chen, J. Am. Chem. Soc., 130, 16739 (2008). https://doi.org/10.1021/ja805545x
  27. J. J. Chastain, R. C. King, Handbook of X-ray photoelectron spectroscopy, p. 157, USA: Physical Electronics, Inc., 1995.
  28. S. Suto, K. Sakamoto, D. Kondo, T. Wakita, A. Kimura and A. Kakizaki, Surf. Sci., 438, 242 (1999). https://doi.org/10.1016/S0039-6028(99)00576-2
  29. R. S. Zhai, A. Das, C. K. Hsu, C. C. Han, T. Canteenvala, L. Y. Chiang and T. J. Chuang, Carbon, 42, 395 (2004). https://doi.org/10.1016/j.carbon.2003.11.014
  30. T. W. Odom, C. L. Stender, E. C. Greyson and Y. Babayan, Adv. Mater., 17, 2837 (2005). https://doi.org/10.1002/adma.200500856
  31. N. Kang, H. P. Paudel, M. N. Leuenberger, L. Tetard and S. I. Khondaker, J. Phys. Chem. C, 118, 21258 (2014). https://doi.org/10.1021/jp506964m
  32. Y. J. Chen, G. H. Tian, Y. H. Shi, Y. T. Xiao and H. G. Fu, Appl. Catal., B, 164, 40 (2015). https://doi.org/10.1016/j.apcatb.2014.08.036
  33. Z. D. Meng, T. Ghosh, L. Zhu, J. G. Choi, C. Y. Park and W. C. Oh, J. Mater. Chem., 22, 16127 (2012). https://doi.org/10.1039/c2jm32344c
  34. D. L. Miles and C. Espejo, Analyst, 102, 104 (1977). https://doi.org/10.1039/an9770200104
  35. X. Zhu, S. R. Castleberry, M. A. Nanny and E. C. Butler, Environ. Sci. Technol., 39, 3784 (2005). https://doi.org/10.1021/es0485715
  36. Y. Zhou, B. Xiao, S. Q. Liu, Z. D. Meng, Z. G. Chen, C. Y. Zou, C. B. Liu, F. Chen and X. Zhou, Chem. Eng. J., 283, 266 (2016). https://doi.org/10.1016/j.cej.2015.07.049
  37. H. T. Lin, X. Y. Chen, H. L. Li, M. Yang and Y. X. Qi, Mater. Lett., 64, 1748 (2010). https://doi.org/10.1016/j.matlet.2010.04.032
  38. E. Goki, Y. Hisato, V. Damien, F. Takeshi, M. W. Chen and C. Manish, Nano Lett., 11, 5111 (2011). https://doi.org/10.1021/nl201874w
  39. Z. D. Meng, M. M. Peng, L. Zhu and W. C. Oh, Appl. Catal. B, 113-114, 141 (2012). https://doi.org/10.1016/j.apcatb.2011.11.031
  40. F. A. Frame and F. E. Osterloh, J. Phys. Chem. C, 114, 10628 (2010). https://doi.org/10.1021/jp101308e