DOI QR코드

DOI QR Code

3차원 물체인식과 하이브리드 세선화 기법을 이용한 이동로봇의 최적위치 추정

Estimation of optimal position of a mobile robot using object recognition and hybrid thinning method

  • Lee, Woo-Jin (Division of Mechanical Convergence Engineering, Silla University) ;
  • Yun, Sang-Seok (Division of Mechanical Convergence Engineering, Silla University)
  • 투고 : 2021.04.21
  • 심사 : 2021.05.05
  • 발행 : 2021.06.30

초록

본 연구는 서비스 로봇이 물건배달 서비스를 수행하기 위해 인식된 물체의 위치기반 정보로부터 최적의 작업 목적지를 추정하기 위한 방법론을 제안한다. 위치 추정 프로세스는 격자지도에 일반화된 보로노이 그래프를 적용하여 노드와 링크로 구성되는 초기 위상학 지도 작성, RGB-D센서를 이용하여 물체의 인식과 위치정보 추출, 장애물의 형상 및 거리정보를 수집한 후 ,무게중심법과 세선화를 병행하는 하이브리드 기법을 적용하여 서비스 로봇이 물건잡기 작업을 수행할 수 있는 최적의 이동위치를 추정하게 된다. 그런 다음, 노드 위치선정 규칙에 따라 추정된 위치와 기존 노드의 기하학적 거리비교를 통해 로봇의 작업 목적지에 대한 최적의 노드정보를 갱신하게 된다.

In this paper, we propose a methodology for estimating the optimal traversable destination from the location-based information of the object recognized by the mobile robot to perform the object delivery service. The location estimation process is to apply the generalized Voronoi graph to the grid map to create an initial topology map composed of nodes and links, recognize objects and extract location data using RGB-D sensors, and collect the shape and distance information of obstacles. Then, by applying the hybrid approach that combines the center of gravity and thinning method, the optimal moving position for the service robot to perform the task of grabbing is estimated. And then, the optimal node information for the robot's work destination is updated by comparing the geometric distance between the estimated position and the existing node according to the node update rule.

키워드

과제정보

This work was supported by the Technology Innovation Program (No. 20000515) funded By the Ministry of Trade, Industry & Energy(MOTIE, Korea) and Institute for Information & communications Technology Promotion(IITP) grant funded by the Korea government(MSIT) (No. 2017-0-00432)

참고문헌

  1. H. Choi, J. Park, and Y. Moon, "Ubiquitous sensor network based localization system for public guide robot," Journal of the Korea Institute of Information and Communication Engineering, vol. 10, no. 10, pp. 1920-1926, Oct. 2006.
  2. E. C. Hwang, "Artificial Intelligence Service Robot Market Trend," in Proceedings of the Korean Society of Computer Information Conference, pp. 111-112, 2021.
  3. C. Y. Sohn, J. Y. Oh, and Y. S. Chung, "Development of Annotation Tool for Topological Map," in Proceedings of Symposium of the Korean Institute of communications and Information Sciences, pp. 753-754, 2020.
  4. X. Qi, W. Wang, L. Guo, M. Li, X. Zhang, and R. Wei, "Building a Plutchik's Wheel Inspired Affective Model for Social Robots," International Journal of Information and Communication Engineering, vol. 16, pp. 209-221, Mar. 2019.
  5. S. Yun and S. Yun, "Implementation of human-tracking robot system using human position and a pan-tilt module," in Proceeding of the Korea Institute of Information and Communication Engineering, pp. 100-103, 2019.
  6. M. Seong and S. Yun, "Estimation of indoor location using a beacon trilateration," in Proceeding of Institute of Control, Robotics and Systems, pp. 19-20, 2020.
  7. H. Yu, J. Park, J. Sim, and G. Kim, "Navigation of the mobile robot and estimation of robot pose using beacon," in Proceeding of the Korea Institute of Electrical Engineers, pp. 75-76, 2015.
  8. A. Oh, "Smart factory logistics management system using house interior position tracking technology based on bluetooth beacon," Journal of the Korea Institute of Information and Communication Engineering, vol. 19, no. 11, Nov. 2015.
  9. C. Choi, J. Song, W. Chung, and M. Kim, "Topological map building based on thinning and its application to localization," in Proceeding of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 822-827, 2003.
  10. H. S. Kim and H. B. Lee, "Autonomous Exploration and Semantic Mapping of a Mobile Robot Using Efficient Frontier Selection," Journal of Institute of Control, Robotics and Systems, vol. 26, no. 5, pp. 318-324, May. 2020. https://doi.org/10.5302/J.ICROS.2020.20.0026
  11. H. B. Lee, "Obstacle Avoidance Algorithm for Cooperative Mobile Robots under Velocity and Curvature Constraints," Journal of Institute of Control, Robotics and Systems, vol. 25, no. 10, pp. 910-915, Sep. 2019. https://doi.org/10.5302/J.ICROS.2019.19.0165
  12. YOLO ROS: Real-Time Object Detection for ROS [Internet]. Available: https://github.com/leggedrobotics/darknet_ros.