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Abstract

This paper proposes a method to find an optimal T' with the most terminal of the subset of T' trees that can be connected by a

given length by improving a memetic genetic algorithm within several constraints, when the set of terminal T is given to the

Euclidean plane R2. Constraint (1) is that a given length cannot connect all terminals of T, and (2) considers only the rectilinear

layout of the edge connecting each terminal. The construction of interconnections has been used in various design-related areas,

from network to architecture. Among these areas, there are cases where only the rectilinear layout is considered, such as wiring

paths in the computer network and VLSI design, network design, and circuit connection length estimation in standard cell

deployment. Therefore, the heuristics proposed in this paper are expected to provide various cost savings in the rectilinear

layout.

Index Terms: Genetic algorithm, Rectilinear steiner tree, Interconnection graph problem, NP-hardness

I. INTRODUCTION

The construction of a maximum interconnection of ele-

ments distributed within a given space is a problem abstracted

in various industrial fields from network to architecture [1].

In this interconnection construction, connecting all terminals

using a minimum length can be obtained using the minimum

cost spanning tree (MST) algorithm [2]. It has been proven

that the problem of constructing maximum interconnections

is NP-hard when the given length is unable to connect all

elements and heuristics, which build efficient interconnec-

tion through the memetic genetic algorithm has been pro-

posed [3].

This paper aims to develop a construction method for

interconnections using only the rectilinear layout edge through

the rectilinear memetic genetic algorithm after adding a con-

straint of using only the rectilinear layout in the random dis-

tribution. In many real-world cases only the rectilinear layout

edge is used, including the path for overall wiring of the

computer network and VLSI design, network design, and cir-

cuit connection length estimation for standard cell placement

[4-6]. Therefore, by applying the improvements proposed in

this paper, it can be used more efficiently in real life.

II. NP-HARDNESS OF A SUBGRAPH

Definition 2-1. A Steiner tree is composed of a given termi-

nal as an instance. However, to save length, an arbitrary ter-

minal can be added to the given terminal, which is called the

Steiner point. Among Steiner trees, one using the minimum

length is called the Steiner minimum tree (SMT) [7].

Terminal set T is assigned to the Euclidean plane R2. In
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addition, suppose that the candidate of all possible Steiner

point distributions of each plane exist as set S:

Definition 2-2. A rectilinear minimum spanning tree (RMST)

is an MST constructed with terminal set T as an instance.

However, all interconnections are MSTs constructed using the

Manhattan distance for a rectilinear layout [8].

Definition 2-3. A rectilinear Steiner tree (RST) is a Steiner

tree that uses only vertical and horizontal edges, considering

only the rectilinear layout 

Lemma 2-3-1. RST means RMST with T∪ S’ as an instance

when Steiner point subset S’ is present, not an empty set.

Definition 2-4. The minimum rectilinear Steiner tree (MRST)

is an optimal RST with the minimum length among all RSTs.

Lemma 2-4-1. When the Steiner point subset of MRST is Sopt,

MRST means RMST with T∪Sopt as an instance.

Lemma 2-4-2. MRST is a subgraph of a Hanan grid with a

given terminal set as an instance [9].

Lemma 2-4-3. The Steiner point subset Sopt of MRST exists

within the convex hull with a given terminal set as an instance

[10].

Formulate the following problems to prove the proposed

problem.

For any given instance (say α) of the SMTP, transform it

into the instance of problem A as follows: First, calculate the

length (say L’) of MST for α. INSTANCE 1 for problem A is

L’. The INSTANCE 2 of Problem A is α. Note that for the

same set of terminals on a Euclidean plane, it is proven that

the length of MST is ≥ the length of SMT [7]. Note that α

has an optimal solution, say Topt, although we can hardly

find it practically (say the length of Topt is Lopt).

If the solver for problem A exists, we may solve the

SMTP using it. Starting from L’, by using the binary search

method over length L’, we may reach Lopt, the minimum

length, where all terminals are interconnected. Note that in

each step of this binary search, check if all the terminals are

interconnected, and then lengthen or shorten the length so

that we can reach Lopt efficiently. This algorithm is as fol-

lows: 

Step 1) The calculation of L’ for MST takes p-time. 

Step 2) We know that the binary search process may repeat

log(L’) times at the most, which makes the time of the

binary search log(L’). As a result, the time required to reach

Lopt from L’ takes the p-time * log (L’). SMTP has already

been proven to be NP-hard [7]. Therefore, Problem A is NP-

hardness. The proposed problem of finding a subgraph is

formulated as follows:

III. HEURISTIC OF THIS PROBLEM

In this paper, we express the state of the individual as an

RST for the correct linear layout of the edge. Therefore, not

only the included terminal status but also the Steiner point

status should be an individual field. In addition, the Steiner

point candidate has a large space compared with the number

of given terminals. Only the candidate of the included

Steiner point is stored, and the coordinates of each Steiner

point must be included as a collection that can react dynami-

cally.

Because the problem in this paper is finding the minimum

length connecting all the given terminal set T to obtain

MRST, it is NP-hard. Therefore, we set the given length

using the following definition: “The ratio of RMST (T) to

MRST (T) is lower than 3/2 [11].” Equation 1 is a modified

formula for this proposition. At this point, the RMST (T) of

(1) can be obtained using the MST algorithm. Thus, the

given length was set to be less than 2/3 RMST (T).

RMST(T) ≤ MRS(T) . (1)

Let us assume that the Euclidean plane R2 given terminal

set T is an r*r plane. At this time, there are possible r2

Steiner point candidates. Therefore, it is necessary to reduce

the search space by reducing the number of Steiner point

candidates. First, when a certain terminal subset T' exists,

the optimal Steiner point subset S' that optimizes RMST (T')

must be the subset of Hanan grid H (T) [9]. Therefore, when

Problem SMTP (Steiner minimum tree problem)

INSTANCE: A finite set of given terminals on a Euclidean

plane. 

QUESTION: Find the SMT for the INSTANCE.

Problem A (Consider SMT in the problem of the previous

paper [3])

INSTANCE 1: Given length L.

INSTANCE 2: A finite set of given terminals on a Euclid-

ean plane.

QUESTION: Find the SMT that has the max number of

terminals on a Euclidean plane within length L.

Problem B (Consider the MRST in the problem of the pre-

vious paper [3])

INSTANCE 1: Given length L.

INSTANCE 2: A finite set of given terminals on a Euclid-

ean plane.

QUESTION: Find the MRST that has the max number of

terminals on a Euclidean plane within the length L.

2

3
--- for 

RMST T( )
MRST T( )
-----------------------

3

2
---<⎝ ⎠

⎛ ⎞
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the number of terminals of the given terminal set T is n, the

Steiner point candidate can be reduced to n2 through H (T).

Second, when a certain terminal subset T' exists, the optimal

Steiner point subset S' that optimizes RMST (T') always

exists within the convex hull consisting of T' [10]. There-

fore, the Steiner point candidate can be selected from the

Steiner points inside the convex hull consisting of a given

terminal set T. This method is used to store the candidate

Steiner point of a given terminal set. These data will be used

later in the Steiner point-related operation.

Compared with previous studies, this paper cannot evalu-

ate the usability of individual Steiner point subsets using

only length. Accordingly, a criterion for determining the

usability of the Steiner point subset of a specific individual

is required. Therefore, the usability of the Steiner point is

defined according to the degree. Fig. 1 shows the layout of

the Steiner point according to its degree.

For degree 1, the Steiner point is the end point of the con-

nection. Hence, it wastes length. For degree 2, there is no

change in length when considering the Manhattan distance.

For degree 3 or more, the Steiner point saves length by over-

lapping the edge of the RST. Therefore, the Steiner point

degree can be a criterion for evaluating the usability of the

Steiner point. This information is used for the fitness.

In the case of the usability of the Steiner point, the inter-

connection of individuals is unknown until it is obtained

through the RST. Therefore, it cannot be used when deter-

mining the degree of superiority in the RST operation pro-

cess. Therefore, it is necessary to find a Steiner point with

high usability without obtaining an RST for any individual.

This paper approaches this through the Steiner point pool,

which is a methodology for selecting Steiner point candi-

dates that are more likely to be useful on a terminal subset

including an individual, considering the characteristics that

the Steiner point is useful when the degree is 3 or more, and

the Prim algorithm, which is the logic used to obtain RST,

connects from the nearest terminal. The basis of this method-

ology is that when there are three terminals, the coordinates

of the optimal Steiner point have the center values of the X

and Y coordinates of each terminal. Suppose that the sequence

of an individual’s terminal connection is known. In this case,

interconnection through the Prim algorithm has the charac-

teristic of selecting the nearest terminal among the unse-

lected terminals. Therefore, all the optimal Steiner points of

all 3-terminal subsets that maintain their sequence order are

obtained and stored. This information becomes the Steiner

point pool of an individual.

The terminal status, as in the previous paper, is generated

via IGP (Initial Generation Probability) [3]. In this case, the

Steiner point status has a random number of Steiner points

less than the number of terminals that the individual has.

This Steiner point is randomly selected from the Steiner

point candidates selected through the Hanan grid and the

convex hull of the given terminal set. 

The fitness [3] of the previous paper was modified to

reflect the usability of the Steiner point of this paper. Eq. (2)

is a modified fitness function.

Fuction of Fitness( ) :  = 1 − ' (2)

A = α * min

B = β *

Γ = γ * ((3 * (# of given teminal − 2))

− Sum of Steiner Point Degree of Individual)

(α + β + γ = 1), ' = A + B�+ Γ

This fitness is evaluated better when lesser length is used,

more number of terminals are included, and when the sum of

the degree values of the included Steiner point is greater.

A one-point crossover is used for each parent individual

[3, 6]. In this paper, it is necessary to consider the crossover

of the Steiner point status in addition to the crossover between

the terminal statuses. A division point is set by generating a

random number according to the smaller size of the Steiner

point status size among the two individuals. At this time, as

the generated child individual has two child terminal status

and child Steiner point status, respectively, four child indi-

viduals are created.

The terminal status was performed in the same manner as

in a previous paper [3]. For the Steiner point status, a muta-

tion occurs with a 5% probability. When a mutation occurs, a

random number of [0 ... size of Steiner point status] is gener-

ated, and two Steiner points from the index are mutated to a

random Steiner point within the candidate Steiner point.

There is no guarantee that the generated child individual

and the individual created in the initialization of the popula-

tion do not exceed a given length. Therefore, the length must

be adjusted so that it does not exceed the specified length

through adjustment. Suppose that a certain child individual

has a terminal subset T' and a Steiner point subset S'. Adjust-

   

1.0
Length of Individual

0.95 * given length
-------------------------------------------------,⎝ ⎠

⎛ ⎞

1
# of included terminal of individual

# of given terminal
-------------------------------------------------------------------------------------–⎝ ⎠

⎛ ⎞

 

Fig. 1. Layout of Steiner point by degree.
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ment establishes RST as T'∪S' instance and checks whether it

exceed the given length in this process. If the given length is

exceeded, the terminal and Steiner points that are excluded

are deleted from the status. In this case, the degree value of

the Steiner points is maintained for a local search.

A local search is performed for the local optimization of

the child individual after adjustment. This operation consists

of three steps. Step 1) Delete or modify the Steiner point in

the Steiner point status. After checking the degree of each

Steiner point, the Steiner point with degree 1 is deleted with

a certain probability (say Pdelete). Steiner points with a degree

of 2 are deleted with the same probability and then replaced

by a new Steiner point with a certain probability (say PfirstAdd).

After selecting two terminals closest to an arbitrary terminal

within the terminal status and making a 3-terminal set, a new

Steiner point is selected based on the principle of the Steiner

point pool. After the completion of the first step, the length

is recalculated and stored through the RST. When all termi-

nals and Steiner points are connected, move on to the next

step. Step 2) Repeat the process of containing a terminal

closest to the current component among the terminals that

are excluded. However, this process calculates the length by

rebuilding the interconnection from the beginning when each

terminal is added. This is because the component length with

a new terminal can be smaller than the sum of the lengths

from the existing component to the new terminal.

Theorem 3-1. The length of the component with a new termi-

nal is less than or equal to the length of the existing compo-

nent to the new terminals added.

Proof. Let us assume that the interconnected terminal set T

= {T1, T2, T3 … Tk} until now exists. Using length T is the

length (T). Next, we added Tk+1. Suppose that the minimum

length from the component T to Tk+1 is L. When a set in

which Tk+1 is added to T is called T’ = {T1, T2, T3 … Tk,

Tk+1}, and the length of this T’ is the length (T’), length (T’)

≤ length (T) + L. This is because when Tk+1 is added, the

edge toward the direction from the interconnection within set

T to (T1 → Tk+1), (T2 → Tk+1) … (Tk → Tk+1) can use a

smaller length than that of the existing interconnections.

Therefore, the length (T') has a value less than or equal to

length (T) + L.

This operation is repeated until the re-established intercon-

nection exceeds the given length after adding a new termi-

nal. In addition, when a terminal is added, the terminal is

stored with a certain probability (say PsecondAdd). Step 3)

Based on the principle of the Steiner point pool, a new

Steiner point is added to the stored terminal in step 2. After-

ward, the interconnection is reconstructed, and the individual

length is stored.

This paper aims to find the optimal terminal subset and

optimal Steiner point subset within a given length. However,

because the search space is substantial to find two subsets at

once, the algorithm proposed in this paper is divided into

two parts. Part 1 focuses on finding an excellent terminal

subset, whereas Part 2 focuses on finding an excellent

Steiner point subset in that terminal subset. In Part 1, the

ratio of γ in fitness and the rate of change in Steiner points

according to the degree in local search is low. Therefore, the

operation is based on an optimal terminal subset. At this

time, if the fitness of an individual in the population

becomes more than a certain level, the algorithm switches to

Part 2, wherein the ratio of γ in fitness and the rate of

change in Steiner points according to the degree of local

search are high. Therefore, the operation is based on the

optimal Steiner point subset that fits the optimal terminal

subsets selected in Part 1. 

When the number of terminals in a given terminal set is

1000, the algorithm terminates if more than 30,000 genera-

tions proceed, or if the fitness of an individual in the popula-

tion is more than 90%. 

IV. EXPERIMENTS

A. Environment of the Experiment

The implementation environment for the experiment is the

same as in [3], and the heuristic proposed in this paper is

written in Java using Eclipse. Because each instance is cre-

ated in a different form, the ratio of the number of terminals

included in the minimum cost rectilinear tree close to a

given length (MCRTL) and the rectilinear memetic genetic

algorithm (RMGA) from this paper is constant, but the abso-

lute number is inconsistent. Therefore, a comparable figure

for each algorithm is required. In this paper, we compare this

with the percentage of the number of terminals contained by

each algorithm based on the number of terminals contained

by MCRTL. This figure is defined as quality of the best indi-

vidual (QBI), which is calculated using Eq. (3) as follows:

For instance, self-made and OR-Library are used and the

setting of self-made is as follows: (1) the number of termi-

nals is 1,000 and they are given to the 1,000 × 1,000 Euclid-

ean plane; (2) the coordinates of each terminal are given as

integer values; (3) furthermore, the values of each parameter

are fixed throughout the experiment as follows. 

Size of population = 150;

Given length = 50% of maximum length; 

In Part 1: α = 0.16, β = 0.64, γ = 0.2,

Pdelete=0.1, Pfirstadd=0.5, PsecondAdd=0.5; 

QBI =
# of terminals included in Best Individual

* 100. (3)
# of terminals included in the MCRTL
117 http://jicce.org
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In Part 2: α = 0.1, β = 0.4, γ = 0.5,

Pdelete=0.2, Pfirstadd=0.9, PsecondAdd=0.8.

B. Flag of Switch Condition

The switch condition should be applied after the optimal

terminal subset is explored to a certain extent. Therefore, the

switch condition was specified by conducting an experiment

when the fitness of the population was 50%, 60%, 70%, and

80% identical. Fig. 2 shows a numerical graph of the maxi-

mum terminal value when the switch condition is n% for the

same instance. This figure is the average value of five self-

made instances after conducting 10 experiments each.

As shown in Fig. 2, the switch condition of 50% shows the

best result. In other words, when the population is approxi-

mately 50% the same, candidates for the optimal terminal

subset are sufficiently selected, and finding the optimal

Steiner point subset afterward produces the best results.

C. Performance Comparison of Algorithms using 
Self-made Instance

In this experiment, it is shown that the RMGA proposed in

this paper is more efficient than the benchmark algorithm

and a previous paper [3]. Furthermore, through the QBI fig-

ures of the RPGA, which excluded local search from

RMGA, it can be confirmed that the local search proposed in

this paper works efficiently. The resulting QBI value is an

average value obtained by performing an average of 10

experiments for each instance and proceeding with 30 differ-

ent instances in the same manner. Fig. 3 shows a graph com-

paring the QBI values of each heuristic. 

As shown in Fig. 3, RMGA showed a 13.9% better QBI

compared with MCRTL. It also showed a 10% better QBI

value compared with the previous paper's algorithm. Consid-

ering that MCRTL connected around 361 terminals for 30

instances, RMGA connected approximately 50 more vertices

than did MCRTL. In addition, RPGA has a QBI of 89.4%,

which is lower than that of the MCRTL. This result proves

that the local search proposed in this paper works efficiently.

Table 1 shows the standard deviation of this experiment, and

Table 2 lists the average value of each heuristic runtime.

Considering the standard deviation in Table 2, RMGA

shows a smaller standard deviation compared with RPGA,

which in turn proves that RMGA is more stable compared

with RPGA.

V. CONCLUSIONS

This paper has suggested how to find the Toptimal with the

maximum number of terminals using the RMGA among the

MRSTs of the subset T' of T that can establish interconnec-

tion only with the rectilinear layout edge when a given ter-

minal set T is given on a Euclidean plane. In addition, it was

shown that the proposed algorithm yielded better results

compared with existing algorithms. For the actual MRST

problem, which indicates the applicability of the algorithm

in real life, positive results were derived as well. In addition

to the constraints on the rectilinear layout edge, the actual

construction of the interconnection has varying specificity,

such as an interconnection considering the obstacles in the

connection environment, and an interconnection with a lim-

ited number of connections to each terminal. We leave these

problems considering this specificity as a task for future

research.

Table 1. Standard deviation of Fig. 3 (based on QBI)

RPGA Previous paper RMGA

σ 3.373502 1.4767 1.398957

Table 2. Runtime of Fig. 3

RPGA Previous paper RMGA

Time (sec) 64.83027 1077.368018 1764.619

Fig. 2. Flag of Switch condition.

Fig. 3. QBI of each heuristic using a self-made instance.
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