DOI QR코드

DOI QR Code

Hardware Implementation of Fog Feature Based on Coefficient of Variation Using Normalization

정규화를 이용한 변동계수 기반 안개 특징의 하드웨어 구현

  • Kang, Ui-Jin (Department of Electronics Engineering, Dong-A University) ;
  • Kang, Bong-Soon (Department of Electronics Engineering, Dong-A University)
  • Received : 2021.04.23
  • Accepted : 2021.05.18
  • Published : 2021.06.30

Abstract

As technologies related to image processing such as autonomous driving and CCTV develop, fog removal algorithms using a single image are being studied to improve the problem of image distortion. As a method of predicting fog density, there is a method of estimating the depth of an image by generating a depth map, and various fog features may be used as training data of the depth map. In addition, it is essential to implement a hardware capable of processing high-definition images in real time in order to apply the fog removal algorithm to actual technologies. In this paper, we implement NLCV (Normalize Local Coefficient of Variation), a feature of fog based on coefficient of variation, in hardware. The proposed hardware is an FPGA implementation of Xilinx's xczu7ev-2ffvc1156 as a target device. As a result of synthesis through the Vivado program, it has a maximum operating frequency of 479.616MHz and shows that real-time processing is possible in 4K UHD environment.

자율 주행이나 CCTV와 같이 영상 처리 관련 기술들이 발전함에 따라 영상 왜곡에 대한 문제점을 개선하기 위해 단일 영상을 이용한 안개 제거 알고리즘이 연구되고 있다. 안개 밀도 예측 방법으로는 깊이 맵을 생성하여 영상의 깊이를 추정하는 방법이 있고, 깊이 맵의 학습 데이터로 다양한 안개 특징을 사용할 수 있다. 또한 안개 제거 알고리즘을 실제 기술들에 적용하기 위해 고화질 영상을 실시간으로 처리할 수 있는 하드웨어 구현은 필수적이다. 본 논문에서는 변동계수 기반의 안개 특징인 NLCV(Normalize Local Coefficient of Variation)를 하드웨어로 구현한다. 제안하는 하드웨어는 Xilinx 사의 xczu7ev-2ffvc1156을 Target device로 FPGA 구현하였다. Vivado 프로그램을 통해 합성한 결과 479.616MHz의 최대 동작 주파수를 가지며 4K UHD(3840×2160) 환경에서 실시간 처리 가능함을 보인다.

Keywords

Acknowledgement

This paper was supported by research funds from Dong-A University.

References

  1. J. Kim, "Single Image Haze Removal Algorithm using Dual DCP and Adaptive Brightness Correction," Korea Academy Industrial Cooperation Society, vol. 19, no. 11, pp. 31-37, Nov. 2018.
  2. K. He, J. Sun, and X. Tang, "Single Image Haze Removal Using Dark Channel Prior," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 12, pp. 2341-2353, Dec. 2011. https://doi.org/10.1109/TPAMI.2010.168
  3. S. Lee and B. Kang, "Hardware design for haze removal of single image using cumulative histogram," Journal of IKEEE., vol. 23, no. 3, pp. 984-987, Sept. 2019.
  4. S. Lee and B. Kang, "Real-Time Hardware Design of Image Quality Enhancement Algorithm using Multiple Exposure Images," Journal of the Korea Institute of Information and Communication Engineering, vol. 22, no. 11, pp. 1462-1467, Nov. 2018. https://doi.org/10.6109/JKIICE.2018.22.11.1462
  5. D. Ngo, S. Lee, and B. Kang, "Hardware Design of Patch-based Airlight Estimation Algorithm," Journal of IKEEE, vol. 24, no. 2, pp. 126-130, Jun. 2020.
  6. S. Lee, D. Ngo, and B. Kang, "Nonlinear model for estimating depth map of haze removal," Journal of IKEEE, vol. 24, no. 2, pp. 121-125, Jun. 2020.
  7. J. Lee and B. Kang, "Improving Performance of Machine Learning-Based Algorithms with Adaptive Learning Rate," Journal of KIIT, vol. 18, no. 10, pp. 9-14, Oct. 2020
  8. Q. Zhu, J. Mai, and L. Shao, "A Fast Single Image Haze Removal Algorithm Using Color Attenuation Prior," IEEE Transactions on Image Processing, vol. 24, no. 11, pp. 3522-3533, Nov. 2015. https://doi.org/10.1109/TIP.2015.2446191
  9. Y. Jiang, C. Sun, Y. Zhao, and L. Yang, "Fog Density Estimation and Image Defogging Based on Surrogate Modeling for Optical Depth," IEEE Transactions on Image Processing, vol. 26, no. 7, pp. 3397-3409, Jul. 2017. https://doi.org/10.1109/TIP.2017.2700720
  10. L. K. Choi, J. You, and A. C. Bovik, "Referenceless Prediction of Perceptual Fog Density and Perceptual Image Defogging," IEEE Transactions on Image Processing, vol. 24, no. 11, pp. 3888-3901, Nov. 2015. https://doi.org/10.1109/TIP.2015.2456502
  11. D. Ngo, "Hardware Implementation of Low-light Stretch Algorithm," M.S. theses, Dong-A University, Busan, 2018.