DOI QR코드

DOI QR Code

우드파일 메타물질의 변수 별 진동 및 충격에 끼치는 영향

Vibration and Impact Transmission for each Variable of Woodpile Metamaterial

  • Ha, Young sun (Department of Mechanical Engineering, Kongju National University) ;
  • Hwang, Hui Y. (Department of Mechanical Design Engineering, Andong National University) ;
  • Cheon, Seong S. (Department of Mechanical Engineering, Kongju National University)
  • 투고 : 2021.06.11
  • 심사 : 2021.06.28
  • 발행 : 2021.07.01

초록

메타물질은 자연발생 물질에서 발견되지 않는 특성을 만들 수 있는 여러가지 요소들의 복합체로, 힘의 방향을 변환하거나, 음의 강성을 만들거나, 진동 및 충격 특성을 바꿀 수 있다. 제작이 용이하고, 수직방향의 진동과 충격을 저감시키는데 탁월한 성능을 지닌 우드파일 메타물질의 경우, 충격 저감을 위해 충격 전달에 영향을 끼치는 변수에 대한 기초 연구가 필요하다. 최근 기하학적 요소에 따른 충격저감에 대해 연구가 진행되고 있지만, 재료적 변수가 충격저감에 끼치는 영향에 대한 연구는 미흡하다. 본 논문에서는 우드파일 실린더의 기하학적 특성(적층각도, 직경, 길이)과 재료적 특성(탄성계수, 비중, 포아송 비)을 변수화하여 유한요소해석이 진행되었다. 유한요소해석을 통해 우드파일 실린더가 충격을 전달하는 양상을 확인하고, 주효과도 분석을 통해 충격 힘과 에너지의 저감에 대한 변수 별 영향이 고찰되었고, 고속 푸리에 변환(FFT)을 통해 주파수 대역에 대한 분석이 진행되었다. 충격 힘과 진동을 저감시키기 위하여 실린더의 접촉 면적에 영향을 주는 변수들이 크게 영향을 끼치는 것으로 나타났다.

Metamaterials are complexes of elements that can create properties not found in naturally occurring materials, such as changing the direction of forces, creating negative stiffness, or altering vibration and impact properties. In the case of wood pile metamaterials that are easy to manufacture and have excellent performance in reducing vibration and shock in the vertical direction, basic research on variables affecting shock transmission is needed to reduce shock. Although research on impact reduction according to geometrical factors is being conducted recently, studies on the effect of material variables on impact reduction are insufficient. In this paper, finite element analysis was carried out by variablizing the geometrical properties (lamination angle, diameter, length) and material properties (modulus of elasticity, specific gravity, Poisson's ratio) of wood pile cylinders. Through finite element analysis, the shape of the wooden pile cylinder delivering impact was confirmed, and the effect of each variable on the reduction of impact force and energy was considered through main effect diagram analysis, and frequency band analysis was performed through fast Fourier transform. proceeded In order to reduce the impact force and vibration, it was found that the variables affecting the contact area of t he cylinder have a significant effect.

키워드

과제정보

이 논문은 2018년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(No. 2018R1D1A1B07051169).

참고문헌

  1. Lin, G., Li, J., Chen, P., Sun, W., Chizhik, S.A., Makhaniok, A.A., Melnikova, G.B., and Kuznetsova, T.A., "Buckling of Lattice Columns Made from Three-dimensional Chiral Mechanical Metamaterials," International Journal of Mechanical Science, Vol. 194, 2021, 106208. https://doi.org/10.1016/j.ijmecsci.2020.106208
  2. Liu, K., Han, L., Hu, W., Ji, L., Zhu, S., Wan, Z., Yang, X., Wei, Y., Dai, Z., Zhao, Z., Li, Z., Wang, P., and Tao, R., "4D Printed Zero Poisson's Ratio Metamaterial with Switching Function of Mechanical and Vibration Isolation Performance," Material & Design, Vol. 196, 2020, 109153. https://doi.org/10.1016/j.matdes.2020.109153
  3. Jiang, W., Yin, M., Liao, Q., Xie, L., and Yin, G., "Three-dimensional Single-phase Elastic Metamaterial for Low-frequency and Broadband Vibration Mitigation," International Journal of Mechanical Sciences, Vol. 190, 2021, 106023. https://doi.org/10.1016/j.ijmecsci.2020.106023
  4. Wu, X., Su, Y., and Shi, J., "In-plane Impact Resistance Enhancement with a Graded Cell-wall Angle Design for Auxetic Metamaterials," Composite Structures, Vol. 247, 2020, 112451. https://doi.org/10.1016/j.compstruct.2020.112451
  5. Meng, Z., Liu, M., Zhang, Y., and Chen, C.Q., "Multi-step Deformation Mechanical Metamtaerials," Journal of the Mechanics and Physics of Solids, Vol. 144, 2020, 104095. https://doi.org/10.1016/j.jmps.2020.104095
  6. Tao, R., Xi, L., Wu, W., Li, Y., Liao, B., Liu, L., Leng, J., and Fang, D., "4D Printed Multi-stable Metamaterials with Mechanically Tunable Performance," Composite Structures, Vol. 252, 2021, 112663. https://doi.org/10.1016/j.compstruct.2020.112663
  7. Santos, F.A., Rebelo, H., Coutinho, M., Sutherland, L.S., Cismasiu, C., Farina, I., and Fraternali, F., "Low Velocity Impact Response of 3D Printed Structures Formed by Cellular Metamaterials and Stiffening Plates: PLA vs. PETg," Composite Structures, Vol. 256, 2021, 113128. https://doi.org/10.1016/j.compstruct.2020.113128
  8. Hu, J., Yu, T.X., Yin, S., and Xu, J., "Low-speed Impact Mitigation of Recoverable DNA-inspired Double Helical Metamaterials," International Journal of Mechanical Sciences, Vol. 161-162, 2019, 105050. https://doi.org/10.1016/j.ijmecsci.2019.105050
  9. Yang, J.K., Silvestro, C., Khatri, D., Nardo, L.D., and Daraio, C., "Interaction of Highly Nonlinear Solitary Waves with Linear Elastic Media", Physical Review E, Vol. 83, 2011, 046606. https://doi.org/10.1103/PhysRevE.83.046606
  10. Kim, E.H., Yang, J.K., Hwang, H.Y., and Shul, C.W., "Impact and Blast Mitigation Using Locally Resonant Woodpile Meta-materials", International Journal of Impact Engineering, Vol. 101, 2017, pp. 24-31. https://doi.org/10.1016/j.ijimpeng.2016.09.006
  11. Cuan-Urquizo, E., and Bhaskar, A., "Flexural Elasticity of Woodpile Lattice Beams", European Journal of Mechanics A/Solids, Vol. 67, 2018, pp. 187-199. https://doi.org/10.1016/j.euromechsol.2017.09.008
  12. Zhu, S., Wang, B., Tan, X., Hu, J., Wang, L., Zhou, Z., and Chen, S., "A Novel Bi-Material Negative Stiffness Metamaterial in Sleeve-Type via Combining Rigidity with Softness", Composite Structures, Vol. 262, 2021, 113381. https://doi.org/10.1016/j.compstruct.2020.113381
  13. Kim, E., Li, F., Chong, C., Theocharis, G., Yang, J., and Kevrekidis, P.G., "Highly Nonlinear Wave Propagation in Elastic Woodpile Periodic Structures," Physical Review Letters, Vol. 114, 2015, 118002. https://doi.org/10.1103/PhysRevLett.114.118002
  14. Kim, E.H., and Yang, J.K., "Wave Propagation in Single Column Woodpile Phononic Crystals: Formation of Tunable Band Gaps", Journal of the Mechanics and Physical Review Letters, Vol. 71, 2014, pp. 33-45. https://doi.org/10.1016/j.jmps.2014.06.012
  15. Hwang, H.Y., Lee, J.W., Kim, E.H., Yang, J.K., and Shul, C.W., "Effects of Material Anisotropy in Impact Mitigation in Single Column Woodpile Structures", Journal of Mechanical Science and Technology, Vol. 32, 2018, pp. 5817-5822. https://doi.org/10.1007/s12206-018-1129-1
  16. Popov, V.L., Contact Mechanics and Friction: Physical Principles and Application, 2nd ed., Springer-Verlag Berlin Heidelberg, Germany, 2010.