DOI QR코드

DOI QR Code

FTIR 분자구조 해석을 통한 에폭시-실리카 나노복합소재의 열기계적 물성 연구

Study on the Thermomechanical Properties of Epoxy-Silica Nanocomposites by FTIR Molecular Structure Analyses

  • 장서현 (인하대학교 공과대학 기계공학과) ;
  • 한유수 (인하대학교 공과대학 기계공학과) ;
  • 황도순 (한국항공우주연구원) ;
  • 정주원 (한국항공우주연구원) ;
  • 김영국 (인하대학교 메카트로닉스공학과)
  • Jang, SeoHyun (Department of Mechanical Engineering, Inha University) ;
  • Han, Yusu (Department of Mechanical Engineering, Inha University) ;
  • Hwang, DoSoon (Korea Aerospace Research Institute) ;
  • Jung, Juwon (Korea Aerospace Research Institute) ;
  • Kim, YeongKook (Department of Mechatronics Engineering, Inha University)
  • 투고 : 2021.04.29
  • 심사 : 2021.05.18
  • 발행 : 2021.06.30

초록

이 연구에서는 에폭시 수지에 포함된 나노 실리카 입자의 농도가 재료의 열/기계적 물성에 미치는 영향에 대해 알아보았다. 약 12 nm 크기의 나노 입자를 에폭시 수지에 다섯가지 무게비로 섞은 나노복합소재를 제작하였다. DMA와 TMA 방법을 이용하여 유리전이온도, 응력이완, 열팽창 거동을 측정하였다. 이를 통해 나노입자가 재료의 점탄성 거동에 어떠한 영향을 미치는지 보였다. 실리카 입자의 함량이 증가할수록 순수 에폭시 재료 대비 탄성 물성은 증가하였고, 유리전이온도는 감소하였다. FTIR 결과는 분자구조의 관점에서 충진제 함량에 따른 물성변화의 원인을 찾고 나노입자가 에폭시 분자 구조에 어떠한 영향을 미치는지를 규명하는데 중요한 역할을 하였다.

This paper analyzed the effects of the concentration of nano-silica particles contained in epoxy resin on the thermomechanical properties of the composite materials. The 12nm sized nanoparticles were mixed with epoxy polymer by 5 different weight ratios for the test samples. The glass transition temperature, stress relaxation, and thermal expansion behaviors were measured using dymanic mechanical analyzer (DMA) and thermomechanical analyzer (TMA). It was shown that the nano particle mixing ratios had significant influences on the viscoelastic behaviors of the materials. As the content of the silica particles was increased, the elastic modulus was also increased, while the glass transition temperatures were decreased. Fourier Transform Infrared Spectroscopy (FTIR) results played an important role in determining the causes of the property changes by the filler contents in terms of the molecular structures, enabling the interpretations on the material behaviors based on the chemical structure changes.

키워드

과제정보

이 연구를 지원해준 한국 항공우주연구원과 인하대학교에 감사를 드립니다.

참고문헌

  1. S. Kumar, B. C. Benicewics, R. A. Vaia, and K. I. Winey, "50th Anniversary Perspective: Are Polymer Nanocomposite Practical for Applications?", Macromolecules, 50(3), 714 (2017). https://doi.org/10.1021/acs.macromol.6b02330
  2. V. Arabli, and A. Aghilim, "The Effect of Silica Nanoparticles,Thermal Stability, and Modeling of the Curing Kinetics of Epoxy/silica Nanocomposite", Journal of Advanced Composite Materials, 24(6), 561 (2015). https://doi.org/10.1080/09243046.2014.944254
  3. S.M. Lee, H. K. R, S. H. Lee, "A Study on Thermal Properties of Epoxy Composites with Hybrid Fillers", J. Microelectron.Packag.Soc., 26(4), 33 (2019).
  4. W. Qi, J. H. Lee, R. P. Dhavale, H.Y. Kim, T. H. Kim, H. H, Park, "Study on the Hydrophobicity and Mechanical Properties of Silica-Based Aerogel by Introducing Organic Benzene", J. Microelecctron.Packag.Soc., 27(4), 135 (2020).
  5. B. N. Jang, C. A. Wilkie, "The effects of clay on the thermal degradation behavior of poly (styrene-co-acrylonitirile)", Polymer, 46, 9702 (2005). https://doi.org/10.1016/j.polymer.2005.07.078
  6. Z. Peng, L. X. Kong,"A thermal degradation mechanism of polyvinyl alcohol/silica Nanocomposites", Polymer Degradation and Stability, 92, 1061 (2007). https://doi.org/10.1016/j.polymdegradstab.2007.02.012
  7. S. Jang, Y. Han, D. Hwang, J. Jung, Y. K. Kim, "Thermal Degradation Analyses of Epoxy-Silica Nano Composites", Composite Research, 33(5), 268 (2020).
  8. W. Li, Z. Xia, A. Li, Y. Ling, B. Wang, W. Gan, "Effect of SiO2 nanoparticles on the reaction induced phase separation in dynamically asymmetric epoxy/PEI blends", RSC Adv., 5, 8471 (2015). https://doi.org/10.1039/C4RA12261E
  9. Y. L. Lui, C. Y. Hsu, W. L. Wei and R. J. Jeng, "Preparation and Thermal Properties of Epoxy-silica Nanocomposites from Nanoscale Colloidal Silica", Polymer, 44(18), 5159 (2003). https://doi.org/10.1016/S0032-3861(03)00519-6
  10. C. Chen, R. S. Justice, D. W. Scheaefer, and J. W. Baur, "Highly Dispersed Nanosilica-epoxy Resins with Enhanced Mechanical Properties", Polymer, 49(17), 3805 (2008). https://doi.org/10.1016/j.polymer.2008.06.023
  11. J. Zhou, J. P. Lucas, "Hygrothermal effects of epoxy resin. Part II: variations of glass transition temperature", Polymer 40, 5513 (1999). https://doi.org/10.1016/S0032-3861(98)00791-5
  12. C. P. Wong, R. S. Bollampally, "Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging", Applied Polymer, 74(14), 3396 (1999). https://doi.org/10.1002/(SICI)1097-4628(19991227)74:14<3396::AID-APP13>3.0.CO;2-3
  13. A. Doblies, B. Boll, B. Fiedler, "Prediction of Thermal Exposure and Mechanical Behavior of Epoxy Resin using Artificial Neural Networks and Fourier Transform Infrared Spectroscopy", Polymers, 11, 363 (2019). https://doi.org/10.3390/polym11020363
  14. Y. Yin, H. Yin, Z. Wu, C. Qi, H. Tian, W. Zhang, Z. Hu, L. Feng, "Characterization of Coals and Coal Ashes with High Si Content Using Combined Second-Derivative Infrared Spectroscopy and Raman Spectroscopy", Crystals, 9, 513 (2019). https://doi.org/10.3390/cryst9100513
  15. M. C. Andrade, J. C. Pereira, N. D. Almeida, P. Marques, M. Faria, M. C. Goncalves, "Improving hydraulic permeability, mechanical properties, and chemical functionality of cellulose acetate-based membranes by co-polymerization with tetraethyl orthosilicate and 3-(aminopropyl) triethoxysilane", Carbohydrate Polymers, 261, 117813 (2021). https://doi.org/10.1016/j.carbpol.2021.117813
  16. S. Sprenger, "Nanosilica-Toughened Epoxy Resins", Polymers, 12, 1777 (2020). https://doi.org/10.3390/polym12081777
  17. J. Liang, Z. Liang, R. Zou, Y. Zhao, "Heterogeneous Catalysis in Zeolites, Mesoporous Silica, and Metal-Organic Frameworks", Advanced Materials, 29(30), 1701139 (2017). https://doi.org/10.1002/adma.201701139