DOI QR코드

DOI QR Code

3차원 인쇄기술을 이용한 전자소자 연구 동향

3D Printed Electronics Research Trend

  • 박예슬 (서울대학교 재료공학부) ;
  • 이주용 (서울대학교 재료공학부) ;
  • 강승균 (서울대학교 재료공학부)
  • Park, Yea-Seol (Department of Materials Science and Engineering, Seoul National University) ;
  • Lee Ju-Yong (Department of Materials Science and Engineering, Seoul National University) ;
  • Kang, Seung-Kyun (Department of Materials Science and Engineering, Seoul National University)
  • 투고 : 2021.05.27
  • 심사 : 2021.06.07
  • 발행 : 2021.06.30

초록

3차원 인쇄 기술은 제품의 설계를 3차원으로 하여 조립없이 제품의 생산까지의 시간을 획기적으로 줄이고 복잡한 구조도 구현할 수 있어 미래의 기술로 각광받고 있다. 본 논문은 3차원 인쇄기술을 이용한 전자소자에 대한 최근 연구동향을 알아보면서 구성품, 전원공급장치와 회로에서의 연결과 3차원 인쇄기술 PCB의 응용한 연구논문들을 소개하고 있다. 3차원 인쇄기술로 제작한 전자소자는 원스톱으로 전자소자, 솔더링(soldering), 스태킹(stacking), 회로의 봉지막(encapsulation)까지 제작함으로써 생산설비의 단순화와 전자기기를 개인 맞춤형을 할 수 있는 가능성을 보여주었다.

3D printing, which designs product in three dimensions, draws attention as a technology that will lead the future for it dramatically shortens time for production without assembly, no matter how complex the structure is. The paper studies the latest researches of 3D-printed electronics and introduces papers studied electronics components, power supply, circuit interconnection and 3D-printed PCBs' applications. 3D-printed electronics showed possibility to simplify facilities and personalize electric devices by providing one-stop printing process of electronic components, soldering, stacking, and even encapsulation.

키워드

과제정보

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2019R1C1C1004232).

참고문헌

  1. M. Vaezi, H. Seitz, and S. Yang. "A review on 3D micro-additive manufacturing technologies." The International Journal of Advanced Manufacturing Technology 67.5-8 (2013): 1721-1754.. https://doi.org/10.1007/s00170-012-4605-2
  2. W. Gao, et al. "The status, challenges, and future of additive manufacturing in engineering." Computer-Aided Design 69 (2015): 65-89.
  3. G. Loke, et al. "Structured multimaterial filaments for 3D printing of optoelectronics." Nature communications 10.1 (2019): 1-10. https://doi.org/10.1038/s41467-018-07882-8
  4. D. Espalin, et al. "3D Printing multifunctionality: structures with electronics." The International Journal of Advanced Manufacturing Technology 72.5-8 (2014): 963-978. https://doi.org/10.1007/s00170-014-5717-7
  5. Z. Zhu, H. S. Park, and M. C. McAlpine. "3D printed deformable sensors." Science advances 6.25 (2020): eaba5575. https://doi.org/10.1126/sciadv.aba5575
  6. Z. Zhu, et al. "3D printed functional and biological materials on moving freeform surfaces." Advanced Materials 30.23 (2018): 1707495. https://doi.org/10.1002/adma.201707495
  7. S. J. Hong, J. W. Kim, C. J. Han, Y. S. Kim, T. W. Hong, "Trends on Technology of Eco-friendly Metal and Ceramic Nanoparticle Inks for Direct Printing", J. Microelectron.Packag. Soc., 17(2), 1-9, 2010.
  8. T. S. Wei, et al. "3D printing of customized li-ion batteries with thick electrodes." Advanced Materials 30.16 (2018): 1703027. https://doi.org/10.1002/adma.201703027
  9. C. H. Kim, et al. "High-power aqueous zinc-ion batteries for customized electronic devices." ACS nano 12.12 (2018): 11838-11846. https://doi.org/10.1021/acsnano.8b02744
  10. C. W. Hull, "The birth of 3D printing." Research-Technology Management 58.6 (2015): 25-30.
  11. B. Y. Ahn, et al. "Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes." Science 323.5921 (2009): 1590-1593. https://doi.org/10.1126/science.1168375
  12. S. Y. Wu, et al. "3D-printed microelectronics for integrated circuitry and passive wireless sensors." Microsystems & Nanoengineering 1.1 (2015): 1-9.
  13. K. Sun, et al. "3D printing of interdigitated Li-Ion microbattery architectures." Advanced materials 25.33 (2013): 4539-4543. https://doi.org/10.1002/adma.201301036
  14. Y. L. Kong, et al. "3D printed quantum dot light-emitting diodes." Nano letters 14.12 (2014): 7017-7023. https://doi.org/10.1021/nl5033292
  15. R. D. Gerke, "Embedded passives technology." Resistor 146.188 (2005): 635.
  16. N. Zhou, et al. "Gigahertz electromagnetic structures via direct ink writing for radio-frequency oscillator and transmitter applications." Advanced Materials 29.15 (2017): 1605198..
  17. J. J. Adams, et al. "Conformal printing of electrically small antennas on three-dimensional surfaces." Advanced Materials 23.11 (2011): 1335-1340. https://doi.org/10.1002/adma.201003734
  18. Y. Lu, et al. "Direct-print/cure as a molded interconnect device (MID) process for fabrication of automobile cruise controllers." Journal of Mechanical Science and Technology 29.12 (2015): 5377-5385.
  19. J. A. Lewis, and B. Y. Ahn. "Three-dimensional printed electronics." Nature 518.7537 (2015): 42-43. https://doi.org/10.1038/518042a
  20. J. C. Bae, et al. "3D-Printed Quantum Dot Nanopixels." ACS nano 14.9 (2020): 10993-11001. https://doi.org/10.1021/acsnano.0c04075
  21. Y. Huang, et al. "3D-Printed OFETs of the 1, 4-bis (3-phenylquinoxalin-2-yl) benzene-based polymer semiconductors." Polymer Chemistry 8.33 (2017): 4878-4886. https://doi.org/10.1039/C7PY00810D
  22. D. Majak, J. Fan, and M. Gupta. "Fully 3D printed OECT based logic gate for detection of cation type and concentration." Sensors and Actuators B: Chemical 286 (2019): 111-118. https://doi.org/10.1016/j.snb.2019.01.120
  23. J. Kwon, et al. "Three-dimensional monolithic integration in flexible printed organic transistors." Nature communications 10.1 (2019): 1-10. https://doi.org/10.1038/s41467-018-07882-8
  24. P. C. Hutter, et al. "Efficiency of the switching process in organic electrochemical transistors." ACS applied materials & interfaces 8.22 (2016): 14071-14076. https://doi.org/10.1021/acsami.6b02698
  25. X. Li, et al. "3D-printed stretchable micro-supercapacitor with remarkable areal performance." Advanced Energy Materials 10.14 (2020): 1903794. https://doi.org/10.1002/aenm.201903794
  26. H. Cui, et al. "Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response." Nature materials 18.3 (2019): 234-241. https://doi.org/10.1038/s41563-018-0268-1
  27. F. Kim, et al. "3D printing of shape-conformable thermoelectric materials using all-inorganic Bi 2 Te 3-based inks." Nature Energy 3.4 (2018): 301-309.. https://doi.org/10.1038/s41560-017-0071-2
  28. M. P. Mahmud, et al. "3D-Printed Triboelectric Nanogenerators: State of the Art, Applications, and Challenges." Advanced Energy and Sustainability Research 2.3 (2021): 2000045.
  29. N. Zhou, et al. "Perovskite nanowire-block copolymer composites with digitally programmable polarization anisotropy.' Science advances 5.5 (2019): eaav8141. https://doi.org/10.1126/sciadv.aav8141
  30. M. Chen, et al. "3D nanoprinting of perovskites." Advanced Materials 31.44 (2019): 1904073.. https://doi.org/10.1002/adma.201904073
  31. M. L. Seol, et al. "All 3D printed energy harvester for autonomous and sustainable resource utilization." Nano Energy 52 (2018): 271-278. https://doi.org/10.1016/j.nanoen.2018.07.061
  32. H. Li, et al. "3D printed flexible triboelectric nanogenerator with viscoelastic inks for mechanical energy harvesting." Nano Energy 58 (2019): 447-454. https://doi.org/10.1016/j.nanoen.2019.01.066
  33. Y. Ni, et al. "A review of 3D-printed sensors." Applied Spectroscopy Reviews 52.7 (2017): 623-652. https://doi.org/10.1080/05704928.2017.1287082
  34. S. Z. Guo, et al. "3D printed stretchable tactile sensors." Advanced Materials 29.27 (2017): 1701218. https://doi.org/10.1002/adma.201701218
  35. R. I. Haque, et al. "Self-powered triboelectric touch sensor made of 3D printed materials." Nano Energy 52 (2018): 54-62. https://doi.org/10.1016/j.nanoen.2018.07.038
  36. J. H. Kang, et al. "Three-dimensionally printed pressure sensor arrays from hysteresis-less stretchable piezoresistive composites." RSC Advances 9.68 (2019): 39993-40002. https://doi.org/10.1039/C9RA08461D
  37. K. Li, et al. "3D printed stretchable capacitive sensors for highly sensitive tactile and electrochemical sensing." Nanotechnology 29.18 (2018): 185501. https://doi.org/10.1088/0957-4484/29/18/185501
  38. S. H. Park, et al. "3D printed polymer photodetectors." Advanced Materials 30.40 (2018): 1803980. https://doi.org/10.1002/adma.201803980
  39. M. G. Kang, S. D. Kim, "Bonding Technologies for Chip to Textile Interconnection", J. Microelectron. Packag. Soc., 27(4), 1-10, 2020. https://doi.org/10.6117/KMEPS.2020.27.4.001
  40. Y. Hong, et al. "3D printed microfluidic device with microporous Mn2O3-modified screen printed electrode for realtime determination of heavy metal ions." ACS applied materials & interfaces 8.48 (2016): 32940-32947. https://doi.org/10.1021/acsami.6b10464
  41. M. S. Mannoor, et al. "3D printed bionic ears." Nano letters 13.6 (2013): 2634-2639. https://doi.org/10.1021/nl4007744
  42. Y. H. Cho, et al. "3D Electrodes for Bioelectronics." Advanced Materials (2021): 2005805.
  43. K. Yamada, M. Watanabe, and J. Sone. "Three-dimensional printing of conducting polymer microstructures into transparent polymer sheet: Relationship between process resolution and illumination conditions." Optical Review 21.5 (2014): 679-682. https://doi.org/10.1007/s10043-014-0109-7
  44. A. D. Valentine, et al. "Hybrid 3D printing of soft electronics." advanced Materials 29.40 (2017): 1703817. https://doi.org/10.1002/adma.201703817
  45. W. I. Jung, et al. "Three-dimensional nanoprinting via charged aerosol jets." Nature 592.7852 (2021): 54-59. https://doi.org/10.1038/s41586-021-03353-1
  46. Y. S. Park, et al. "Near-field electrospinning for three-dimensional stacked nanoarchitectures with high aspect ratios." Nano letters 20.1 (2019): 441-448. https://doi.org/10.1021/acs.nanolett.9b04162
  47. T. Tilford, et al. "Design, manufacture and test for reliable 3D printed electronics packaging." Microelectronics Reliability 85 (2018): 109-117. https://doi.org/10.1016/j.microrel.2018.04.008