DOI QR코드

DOI QR Code

Effects of Ar/N2 Two-step Plasma Treatment on the Quantitative Interfacial Adhesion Energy of Low-Temperature Cu-Cu Bonding Interface

Ar/N2 2단계 플라즈마 처리에 따른 저온 Cu-Cu 직접 접합부의 정량적 계면접착에너지 평가 및 분석

  • Choi, Seonghun (School of Materials Science and Engineering, Andong National University) ;
  • Kim, Gahui (School of Materials Science and Engineering, Andong National University) ;
  • Seo, Hankyeol (Graduate School of Nano-IT Design Convergence, Seoul National University of Science and Technology) ;
  • Kim, Sarah Eunkyung (Graduate School of Nano-IT Design Convergence, Seoul National University of Science and Technology) ;
  • Park, Young-Bae (School of Materials Science and Engineering, Andong National University)
  • 최성훈 (안동대학교 신소재공학부 청정에너지소재기술연구센터) ;
  • 김가희 (안동대학교 신소재공학부 청정에너지소재기술연구센터) ;
  • 서한결 (서울과학기술대학교 나노IT디자인융합대학원) ;
  • 김사라은경 (서울과학기술대학교 나노IT디자인융합대학원) ;
  • 박영배 (안동대학교 신소재공학부 청정에너지소재기술연구센터)
  • Received : 2021.04.09
  • Accepted : 2021.05.24
  • Published : 2021.06.30

Abstract

The effect of Ar/N2 two-step plasma treatment on the quantitative interfacial adhesion energy of low temperature Cu-Cu bonding interface were systematically investigated. X-ray photoelectron spectroscopy analysis showed that Ar/N2 2-step plasma treatment has less copper oxide due to the formation of an effective Cu4N passivation layer. Quantitative measurements of interfacial adhesion energy of Cu-Cu bonding interface with Ar/N2 2-step plasma treatment were performed using a double cantilever beam (DCB) and 4-point bending (4-PB) test, where the measured values were 1.63±0.24 J/m2 and 2.33±0.67 J/m2, respectively. This can be explained by the increased interfacial adhesion energy according phase angle due to the effect of the higher interface roughness of 4-PB test than that of DCB test.

3 차원 패키징을 위한 저온 Cu-Cu직접 접합부의 계면접착에너지를 향상시키기 위해 Cu박막 표면에 대한 Ar/N2 2단계 플라즈마 처리 전, 후 Cu표면 및 접합계면에 대한 화학결합을 X-선 광전자 분광법(X-ray photoelectron spectroscopy)을 통해 정량화한 결과, 2단계 플라즈마 처리로 인해 Cu표면에 Cu4N이 형성되어 Cu산화를 효과적으로 억제하는 것을 확인하였다. 2단계 플라즈마 처리하지 않은 Cu-Cu시편은 표면 산화막의 영향으로 접합이 제대로 되지 않았으나 2단계 플라즈마 처리한 시편은 효과적인 표면 산화방지효과로 인해 양호한 Cu-Cu접합을 형성하였다. Cu-Cu직접접합 계면의 정량적 계면접착에너지를 double cantilever beam 시험방법 및 4점 굽힘(4-point bending, 4-PB) 시험방법을 통해 비교한 결과, 각각 1.63±0.24, 2.33±0.67 J/m2으로 4-PB 시험의 계면접착에너지가 더 크게 측정되었다. 이는 계면파괴역학의 위상각(phase angle)에 따른 계면접착에너지 증가 거동으로 설명할 수 있는데 즉, 4-PB의 계면균열선단 전단응력성분 증가로 인한 계면거칠기의 효과에 기인한 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 산업통상자원부(10067804와 20003524)와 KSRC 지원 사업인 미래반도체소자 원천기술개발사업의 연구결과로 수행되었습니다.

References

  1. E. Beyne, "The 3-D interconnect technology landscape", IEEE Design & Test, 33(3), 8 (2016). https://doi.org/10.1109/MDAT.2016.2544837
  2. C. T. Ko, and K. N. Chen, "Low temperature bonding technology for 3D integration", J. Microelectronics Reliability, 52(2), 302 (2012). https://doi.org/10.1016/j.microrel.2011.03.038
  3. S. E. Kim, and S. D. Kim, "Wafer level Cu-Cu direct bonding for 3D integration", Microelectronic Eng., 137(2), 158 (2015). https://doi.org/10.1016/j.mee.2014.12.012
  4. C. Ko, and K. N. Chen, "Low temperature bonding technology for 3D integration", Microelectron. Reliab., 52, 302 (2012). https://doi.org/10.1016/j.microrel.2011.03.038
  5. A. K. Panigrahy, and K. N. Chen, "Low Temperature Cu-Cu Bonding Technology in Three-Dimensional Integration: An Extensive Review", J. Electron. Packaging, 140(1), 010801 (2018). https://doi.org/10.1115/1.4038392
  6. H. S. Park, and S. E. Kim, "Nitrogen passivation formation on Cu surface by Ar-N2 plasma for Cu-to-Cu wafer stacking application", Microsyst. Technol., 25, 3847 (2019). https://doi.org/10.1007/s00542-018-4254-y
  7. B. Lee, J. Park, S. J. Jeon, K. W. Kwon and H. J. Lee, "A Study on the Bonding Process of Cu Bump/Sn/Cu Bump Bonding Structure for 3D Packaging Applications", J. Electrochemical Society, 157, H420 (2010). https://doi.org/10.1149/1.3301931
  8. M. H. Jeong, G. T. Lim, B. J. Kim, K. W. Lee, J. D. Kim, Y. C. Joo, and Y. B. Park, "Interfacial Reaction Effect on Electrical Reliability of Cu Pillar/Sn Bumps", J. Electron. Mat., 39(11), 2368 (2010). https://doi.org/10.1007/s11664-010-1345-7
  9. S. G. Kang, J. Lee, E. S. Kim, N. Lim, S. Kim, S. Kim, and S. E. Kim, "Fabrication and Challenges of Cu-to-Cu Wafer Bonding", J. Microelectron. Packag. Soc., 19(2), 29 (2012). https://doi.org/10.6117/kmeps.2012.19.2.029
  10. H. S. Park, and S. E. Kim, "Two-Step Plasma Treatment on Sputtered and Electroplated Cu Surfaces for Cu-To-Cu Bonding Application", J. Appl. Sciences, 9(17), 3535 (2019). https://doi.org/10.3390/app9020353
  11. E. J. Jang, S. Hyun, H. J. Lee, and Y. B. Park, "Effect of Wet Pretreatment on Interfacial Adhesion Energy of Cu-Cu Thermocompression Bond for 3D IC Packages", J. Electron. Mater., 38(12), 2449 (2009). https://doi.org/10.1007/s11664-009-0942-9
  12. J. Y. Juang, C. L. Lu, K. J. Chen, C. C. A. Chen, P. N. Hsu, C. Chen, and K. N. Tu, "Copper-to-copper direct bonding on highly (111)-oriented nanotwinned copper in no-vacuum ambient", Scientific reports, 8(1), 1 (2018).
  13. H. Park, and S. E. Kim, "Two-Step Plasma Treatment on Copper Surface for Low-Temperature Cu Thermo-Compression Bonding", IEEE Trans. Comp. Packag. Manufac. Tech., 10(2), 332 (2020). https://doi.org/10.1109/tcpmt.2019.2928323
  14. H. K. Seo, S. E. Kim, G. Kim, H. S. Park, Y. B. Park, "Effects of two-step plasma treatment on Cu and SiO2 surfaces for 3D bonding applications", Proc. 70th Electronic Components and Technology Conference (ECTC), Florida, 1677 (2020).
  15. P. Gueguen, L. D. Cicco, M. Rivoire, "Copper direct bonding for 3D integration", International Interconnect Technology Conference (IITC), California, 61 (2008).
  16. E. J. Jang, S. Pfeiffer, B. Kim, T. Matthias, S. M. Hyun, H. J. Lee, and Y. B. Park, "Effect of Post-Annealing Conditions on Interfacial Adhesion Energy of Cu-Cu Bonding for 3-D IC Integration(in Kor.)", J. Mater. Res., 18(4), 204 (2008).
  17. A. K. Panigrahi, S. Bonam, T. Ghosh, S. R. K, Vanjari, S. G. Singh "Low Temperature CMOS Compatible Cu-Cu thermo-compression bonding with constantan alloy passivation for 3D IC Integration" International 3D Systems Integration Conference(3DIC), 14 (2016).
  18. M. S. Park, S. J. Baek, S. D. Kim, and S. E. Kim, "Argon Plasma Treatment on Cu surface for Cu bonding in 3D integration and Their Characteristics", J. Appl. Surface Science, 324(1), 168 (2015). https://doi.org/10.1016/j.apsusc.2014.10.098
  19. G. Kim, J. Lee, S. H. Park, S. Kang, T. S. Kim, Y. B. Park, "Comparison of Quantitative Interfacial Adhesion Energy Measurement Method between Copper RDL and WPR Dielectric Interface for FOWLP Applications (in Kor)" J. Microelectron. Packag. Soc., 25(2), 41(2018). https://doi.org/10.6117/KMEPS.2018.25.2.041
  20. J. M. Park, S. H. Kim, S. E. Kim, Y. B. Park. "Effect of BOE Wet Etching on Interfacial Characteristics of Cu-Cu Pattern Direct Bonds for 3D-IC Integrations (in Kor)" J. Welding and Joining, 30(3), 26 (2012). https://doi.org/10.5781/KWJS.2012.30.3.224
  21. H. K. Seo, H. S. Park, G. Kim, S. E. Kim, and Y. B. Park, "Bonding Strength Evaluation of Copper Bonding Using Copper Nitride Layer (in Kor.)", J. Microelectron. Packag. Soc., 27(3), 55 (2020). https://doi.org/10.6117/KMEPS.2020.27.3.055
  22. A. Keller, and S. Facsko, "Ion-induced nanoscale ripple patterns on Si surfaces: theory and experiment," Materials (Basel)., 3(10), 4811 (2010). https://doi.org/10.3390/ma3104811
  23. L. D. L. S. Valladares, D. H. Salinas, A. B. Dominguez, D. A. Najarro, S. I. Khondaker, T. Mitrelias, C. H. W. Barnes, J. A. Aguiar, and Y. Majima, "Crystallization and electrical resistivity of Cu2O and CuO obtained by thermal oxidation of Cu thin films on SiO2/Si substrates", Thin Solid Films, 520,6368 (2012). https://doi.org/10.1016/j.tsf.2012.06.043
  24. H. S. Park, and S. E. Kim. "Structural Characteristics of ArN2 Plasma Treatment on Cu Surface (in Kor.)", J. Microelectron. Packag. Soc., 25(4), 75 (2018). https://doi.org/10.6117/KMEPS.2018.25.4.075
  25. H. S. Park, and S. E. Kim. "Analysis of Ar Plasma Effects for Copper Nitride Passivation Formation via Design of Experiment (in Kor.)", J. Microelectron. Packag. Soc., 26(3), 51 (2019).
  26. I. H. Lee, S. H. Kim, J. H. Yun, I. K. Park, and T. S. Kim, "Interfacial toughening of solution processed Ag nanoparticle thin films by organic residuals", Nanotechnology, 23(48), 1 (2012).
  27. R. J. Hohlfelder, D. A. Maidenberg, and R. H. Dauskardt, "Adhesion of benzocyclobutene-passivated silicon in epoxy layered structures", J. Mater. Res., 16(1), 243 (2001). https://doi.org/10.1557/JMR.2001.0037
  28. M. F. Kanninen, "An augmented double cantilever beam model for studying crack propagation and arrest", Int. J. of Fract., 9(1), 83 (1973). https://doi.org/10.1007/BF00035958
  29. T. S. Kim, N. Tsuji, N. Kemeling, K. Matsushita, D. Chumakov, H. Geisler, E. Zschech, and R. H. Dausdardt, "Depth dependence of ultraviolet curing of organosilicate low-k thin films", J. Appl. Phys. 103(6), 064108 (2008). https://doi.org/10.1063/1.2894727
  30. R. H. Dauskardt, M. Lane, Q. Ma, and N. Krishna, "Adhesion and debonding of multi-layer thin film structures", Eng. Fract. Mech., 61(1), 141 (1998). https://doi.org/10.1016/S0013-7944(98)00052-6
  31. P. G. Charalambides, J. Lund, A. G. Evans, and R. M. McMeeking, "A test specimen for determining the fracture resistance of biomaterial interfaces", J. Appl. Mech., 111, 77 (1989).
  32. M. Lane, "Interface fracture", Annu. Rev. Mater. Res., 33, 29 (2003). https://doi.org/10.1146/annurev.matsci.33.012202.130440
  33. J. W. Hutchinson, and Z. Suo, "Mixed Mode Cracking in Layered Materials", Adv. Appl. Mech., 29, 63 (1992). https://doi.org/10.1016/S0065-2156(08)70164-9
  34. X. Dai, M. V. Brillhart, and P. S. Ho, "Adhesion Measurement for Electronic Packaging Applications Using Double Cantilever Beam Method", IEEE T. on Compon. Pack. T., 23(1), 101 (2000). https://doi.org/10.1109/6144.833049
  35. S. L. Chua, and C. S. Tan, "Cu-Cu Die to Die Surface Activated Bonding in Atmospheric Environment using Ar and Ar/N2 Plasma", J. Electrochemical Soc., 75(9), 109 (2016).
  36. M. D. Reichert, M. A. White, M. J. Thompson, G. J. Miller, and J. Vela, "Preparation and Instability of Nanocrystalline Cuprous Nitride", Inorganic Chemistry, 54(13), 6356 (2015). https://doi.org/10.1021/acs.inorgchem.5b00679