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Abstract 

In Korea, some pharmaceutical companies and agricultural machine manufacturers associate the length of 

the credit period with the retailer’s order size. This kind of commercial practice is based on the principle of 

economy of scale from the supplier’s point of view and tends to make retailer’s order size large enough to 
qualify a certain credit period break. Also, the credit period allowed by the supplier makes it possible to reduce 

the retail price expecting that the retailer can earn more profits by the stimulating the customer’s demand. 

Since the retailer’s order size is affected by the end customer’s demand, it is reasonable to determine the retail 
price and the order size simultaneously. In this regard, this paper analyzes the retailer’s problem who has to 

decide his sales price and order quantity from a supplier who offers different credit periods depending on his 

order size. And we show that the retailer’s order size large enough to qualify a certain credit period break. 

Also, it is assumed that the end customer’s demand rate is represented by a linear decreasing function of the 
retail price. 

 
Keywords: Credit period, Order-size-dependent delay, Price, Lot-size, Linear demand function 

 

1. INTRODUCTION 

The basic EOQ model is based on the implicit assumption that the retailer must pay for the products at the 
same time he receives them. However, a common practice in industry is to provide a specific delay period for 

the payments after the items are delivered. From this point of view, many research papers have been published 

which deal with the EOQ problem under a fixed credit period. Goyal [1], Chung [2] and Teng et al. [3] studied 
the effect of trade credit on the inventory policy. Recently, Mahata and Goswami [4] also examined the 

economic ordering policy of deteriorating items under trade credit. The common assumption of the previous 

studies is that the customer’s demand is a known constant and, therefore, they disregarded the effects of credit 

transaction on the customer’s demand. As implicitly stated by Mehta [5], an important reason why the supplier 
offer trade credit to the retailers is to increase the demand for the product he produces. Also, Fewings [6] stated 

that the advantage of credit transaction from the supplier’s point of view is substantial in terms of influence on 

the retailer's purchasing and selling decisions. The supplier usually expects that the capital losses incurred 
during the credit period can be compensated by increasing the sales volume. The positive effects of trade credit 

on the customer’s demand can be integrated into the inventory model through the consideration of retailing 

situations where the customer’s demand is a function of the retail price. The availability of the credit period 
by the supplier makes it possible to reduce the retail price from a wider range of option. Since the retailer's 
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order size is affected by the customer’s demand, the problems of determining the retail price and the order size 

are interdependent and must be solved simultaneously. According to the above observations, several research 
papers dealt with the joint price and order size determination problem under trade credit assuming that the 

customer’s demand is a function of selling price. Chang et al. [7], Dye and Ouyang [8], and Teng et al. [9] 

analyzed the problem under Day-terms supplier credit when the customer’s demand is a constant price 

elasticity function of retail price. Also, Avinadav et al. [10] and Shi et al. [11] examined the joint price and lot 
size determination problem without trade credit assuming that the customer’s demand is a linear decreasing 

function of the selling price. Recently, Shinn [12] evaluated the pricing and lot sizing policy under day terms 

supplier credit when the customer’s demand rate is represented by a linear decreasing function of retailing 
price. The common assumption of the above research works is the availability of a certain fixed length of credit 

period offered by the supplier. However, in Korea, some pharmaceutical companies and agricultural machines 

manufacturers associate the length of the credit period with the retailer's total amount of purchase, i.e., they 

offer a longer credit period for a large amount of purchase. This kind of commercial practice is based on the 
principle of economy of scale from the supplier’s point of view and tends to make retailer’s order size large 

enough to qualify a certain credit period break. In this regard, Ouyang et al. [13] introduce the joint pricing 

and ordering problem with order-size dependent trade credit. In this regard, we extend the model presented by 
Shinn [12] assuming that the length of credit period is a function of the amount purchased by the retailer. 
 

2. MODEL FORMULATION 

The mathematical model of the joint price and order size determination problem is developed with the 
following assumptions and notations. 

 

1) Inventory replenishments are instantaneous. 
2) No shortages are allowed. 

3) The demand is a linear function of retail price. 

4) The supplier permits a delay in payments for the items supplied where the length of delay is a function 
of the total amount of purchase for retailer. 

5) The sales revenue during the credit period is deposited in an interest with rate I. At the end of the credit 

period, the product price is paid and the retailer starts paying the capital opportunity cost of the products in 

stock with rate R(𝑅 ≥ 𝐼). 
 

C    : unit purchase cost. 

S    : order cost. 

H  : inventory carrying cost without the capital opportunity cost. 

R    : capital opportunity cost. 

I   : earned interest rate. 

D    : annual demand, as a function of retail price (P), 𝐷 = 𝑎 − 𝑏𝑃, a and b are positive constants. 

P   : unit retail price, P < a/b. 

Q    : order size. 

T    : replenishment cycle time. 

jtc    : credit period for the amount purchased TDC, 
jj vTDCv −1
, where 

jj tctc −1
, mj ,,2,1 =  

and 
mvvv  10

, 00 =v , mv  =  . 

 

The retailer's objective is to maximize the annual net profit ),( TP  from the products sales. His annual 

net profit consists of the following elements. 

1) Annual sales revenue = DP. 

2) Annual purchasing cost = DC. 

3) Annual ordering cost =  S/T. 
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4) Annual inventory carrying cost = (TDH)/2. 

5) Annual capital opportunity cost for 
jj vTDCv −1
  

(i) Case 1( Ttc j  ): As products are sold, the sales revenue is used to earn interest with rate I during the 

credit period jtc . And the average number of stocks earning interest during time ),0( jtc  is (𝐷𝑡𝑐𝑗)/2 and 

the interest earned per order becomes 𝐶𝐼𝑡𝑐𝑗(𝐷𝑡𝑐𝑗)/2. When the credit is settled, the products still in stock 

have to be financed with rate R. Since the average number of stocks during time ( )Ttc j  ,  becomes 𝐷(𝑇 −

𝑡𝑐𝑗)/2, the interest payable per order can be expressed as 𝐶𝑅(𝑇 − 𝑡𝑐𝑗)𝐷(𝑇 − 𝑡𝑐𝑗)/2. Then, 

the annual capital opportunity cost = 
( )( )

T

CItc
Dtc

CRtcTtcT
D

j

j

jj 









−−

2
 - 

2 = 
j

j
DCRtc

DTRC

T

tcIRDC
−+

−

22

)(
2

.  

(ii) Case 2( Ttc j  ): For Ttc j  , the whole sales revenue is used to earn interest with rate I during the 

credit period jtc . The average number of stock earning interest during time ) ,0( T  and ( )jtcT  ,  become 

𝐷𝑇/2 and DT, respectively. Then, 

the annual capital opportunity cost = 
( )

T

CITtcDTTCI
DT

j − + 
2 - = 

jDCItc
DTIC

−
2

.  

Then, the annual net profit ),( TP  can be expressed as 
 

),( TP = Annual Sales revenue – Annual Purchasing cost – Annual Ordering cost – Annual Inventory carrying 

cost – Annual Capital opportunity cost.  
 

Depending on the relative size of jtc  to T, ),( TP  has following two different expressions. 

 

Case 1( Ttc j  )     














−+

−
−−−−= j

j

j CRDtc
CRDT

T

DtcIRCTDH
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S
DCDPTP

22

)(

2
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2

,1
, mjvvTDC jj ,,2,1 ), ,[ 1 = −

   (1) 

Case 2( Ttc j  )   









−−−−−= jj CIDtc

CIDTTDH

T

S
DCDPTP

22
),(,2

, mjvvTDC jj ,,2,1 ), ,[ 1 = −
             (2) 

 

3. DETERMINATION OF OPTIMAL POLICY 

To determine the optimal retail price and order size which maximize Π(𝑃, 𝑇), first let’s analyze the 

characteristics of Π(𝑃, 𝑇) for a fixed P. For a fixed P with 𝑃0, Π(𝑃0, 𝑇) is a concave function of T for every 

i and j, and there exists a unique value 𝑇𝑖,𝑗 , which maximizes Π𝑖,𝑗(𝑃
0, 𝑇), 𝑖 = 1, 2, 𝑗 = 1, 2,⋯ ,𝑚 as follows; 

 𝑇1,𝑗 = √
2𝑆+𝐶(𝑅−𝐼)𝐷𝑡𝑐𝑗

2

𝐷𝐻1
 where 𝐷 = 𝑎 − 𝑏𝑃0 and 𝐻1 = 𝐻 + 𝐶𝑅      (3) 

 𝑇2,𝑗 = √
2𝑆

𝐷𝐻2
 where 𝐷 = 𝑎 − 𝑏𝑃0 and 𝐻2 = 𝐻 + 𝐶𝐼.      (4) 

 

𝑇𝑖,𝑗  and Π𝑖,𝑗(𝑃
0, 𝑇) can be shown to have the following four properties(proofs omitted). 
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Property 1. 𝑇1,𝑗 < 𝑇1,𝑗+1 holds for j = 1, 2, ..., m-1. 
 

Property 2. 𝑇2,𝑗 = 𝑇2,𝑗+1 holds for j = 1, 2, ..., m-1. 
 

Property 3.  For any T, Π𝑖,𝑗(𝑃
0, 𝑇) <  Π𝑖,𝑗+1(𝑃

0, 𝑇), i = 1, 2 and j = 1, 2, ..., m-1. 
 

Property 4.  For any j, if 𝑇1,𝑗 ≥ 𝑡𝑐 𝑗 , then𝑇2,𝑗 ≥ 𝑡𝑐 𝑗 , which implies that Π2,𝑗(𝑃
0, 𝑇) is increasing in T for 

𝑇 <  𝑡𝑐 𝑗.  Also, if 𝑇2,𝑗 < 𝑡𝑐 𝑗 , then 𝑇1,𝑗 < 𝑡𝑐 𝑗 , which implies that Π1,𝑗(𝑃
0, 𝑇) is decreasing in T for  𝑇 ≥

 𝑡𝑐 𝑗 . 

 

Properties 1 and 2 indicate that the value of 𝑇1,𝑗  is strictly increasing as j increases and the value of 𝑇2,𝑗  

is identical for every j.  Also, Property 3 implies that both Π1,𝑗(𝑃
0, 𝑇)  and Π2,𝑗(𝑃

0, 𝑇)  are strictly 

increasing for any fixed value of T as j increases. From the above properties, we can make the following 

observations about the characteristics of the annual net profit function for T, 

 DCvTDCvTIT jjj = −1
, mj ,,2,1 = . These observations simplifies our search process such 

that only a finite number of candidate values of T needs to be considered to find an optimal value 𝑇∗. Let k be 

the smallest index such that 𝑇2,𝑗 < 𝑡𝑐 𝑗 . 

 

Observation 1. For 𝑇 ∈ 𝐼𝑗 , kj  , we can consider the following three cases for 𝑇2,𝑗; 𝑇2,𝑗 <
𝑣𝑗−1

𝐷𝐶
, 
𝑣𝑗−1

𝐷𝐶
≤

𝑇2,𝑗 <
𝑣𝑗

𝐷𝐶
 and 

𝑣𝑗

𝐷𝐶
≤ 𝑇2,𝑗 . 

(i) If 𝑇2,𝑗 <
𝑣𝑗−1

𝐷𝐶
, then 𝑇 =

𝑣𝑗−1

𝐷𝐶
 provides the maximum annual net profit where jIT  .  

(ii) If 
𝑣𝑗−1

𝐷𝐶
≤ 𝑇2,𝑗 <

𝑣𝑗

𝐷𝐶
, then 

jTT ,2=  provides the maximum annual net profit where jIT  . 

(iii) If 
𝑣𝑗

𝐷𝐶
≤ 𝑇2,𝑗, then we do not need to consider T for 

jIT   to find 𝑇∗. 
 

Observation 2.  For 
jIT  , kj  , we can consider the following four cases for 

jT ,1
;𝑇1,𝑗 <

𝑣𝑗−1

𝐷𝐶
, 
𝑣𝑗−1

𝐷𝐶
≤

𝑇1, <
𝑣𝑗

𝐷𝐶
 and 

𝑣𝑗

𝐷𝐶
≤ 𝑡𝑐𝑗 < 𝑇1,𝑗 . 

(i) If 𝑇1,𝑗 <
𝑣𝑗−1

𝐷𝐶
, then 𝑇 =

𝑣𝑗−1

𝐷𝐶
 provides the maximum annual net profit where jIT  .  

(ii) If 
𝑣𝑗−1

𝐷𝐶
≤ 𝑇1,𝑗 <

𝑣𝑗

𝐷𝐶
, then 

jTT ,1=  provides the maximum annual net profit where 
jIT  .  

(iii) If 𝑡𝑐𝑗 <
𝑣𝑗

𝐷𝐶
< 𝑇1,𝑗, then 𝑇 = 𝑣𝑗

−/𝐷𝐶 ,where −=
−

jj vv  and  is a very small positive number, 

provides the maximum annual net profit where 
jIT  . 

(iv) If 
𝑣𝑗

𝐷𝐶
≤ 𝑡𝑐𝑗 < 𝑇1,𝑗, then we do not need to consider T where 

jIT   to find 
*T . 

 

Observation 3. (Search Stopping Rule)  

(i) If 
jTT ,1=  yields the maximum annual net profit for jIT  , then 

jTT ,1

*  .  

(ii) If 𝑇 =
𝑣𝑗
−

𝐷𝐶
 yields the maximum annual net profit for jIT  , then  𝑇∗ ≥

𝑣𝑗
−

𝐷𝐶
. 

 

From the above observations, for 𝑃 = 𝑃0 fixed, only the elements in the set Ω = { )( 0

, PT ji
, 
𝑣𝑗−1

𝐷𝐶
, 
𝑣𝑗
−

𝐷𝐶
 for 

2,1=i  and },,2,1 mj =  become candidates for an optimal replenishment cycle time 𝑇∗(𝑃0)  where 

)( 0

, PT ji
 is obtained by substituting P with 

0P  in equations (3) and (4) . Noting that some elements of Ω 

can be excluded from consideration in search of )(* PT , we formulate the following conditions for 𝑇𝑖,𝑗(𝑃), 

𝑣𝑗−1/𝐷𝐶 and 𝑣𝑗
−/𝐷𝐶 must satisfy to become a candidate of )(* PT . 
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(Cond. 1): The conditions of 𝑇𝑖,𝑗(𝑃) to be a candidate for )(* PT . 

 
jj tcPT )(,1
 and 

𝑣𝑗−1

𝐷𝐶
≤ 𝑇1,𝑗(𝑃) <

𝑣𝑗

𝐷𝐶
  for Case 1        (5) 

 
jj tcPT )(,2
 and 

𝑣𝑗−1

𝐷𝐶
, ≤ 𝑇2,𝑗(𝑃) <

𝑣𝑗

𝐷𝐶
 for Case 2        (6) 

(Cond. 2): The conditions of 
𝑣𝑗−1

𝐷𝐶
 to be a candidate for )(* PT . 

𝑣𝑗−1

𝐷𝐶
≥ 𝑡𝑐𝑗 and 

𝑣𝑗−1

𝐷𝐶
≤ 𝑇1,𝑗(𝑃) for Case 1         (7) 

𝑣𝑗−1

𝐷𝐶
< 𝑡𝑐𝑗 and 

𝑣𝑗−1

𝐷𝐶
> 𝑇2,𝑗(𝑃) for Case 2         (8) 

(Cond. 3): The conditions of 
𝑣𝑗
−

𝐷𝐶
 to be a candidate for )(* PT . 

𝑣𝑗

𝐷𝐶
> 𝑡𝑐𝑗and 

𝑣𝑗

𝐷𝐶
≤ 𝑇1,𝑗(𝑃) for Case 1          (9) 

 

For )(, PT ji
 to be a candidate of )(* PT  in Case 1, )(,1 PT j

 should be included on [𝑣𝑗−1 𝐷𝐶⁄ ,𝑣𝑗 𝐷𝐶⁄ ), 

and also 
jj tcPT )(,1
 must be satisfied. For 𝑣𝑗−1/𝐷𝐶 to be a candidate of )(* PT  in Case 1, ),(,1 TPj  

must be decreasing at 𝑣𝑗−1/𝐷𝐶. In other words, the conditions 
𝑣𝑗−1

𝐷𝐶
> 𝑇1,𝑗(𝑃) and 

𝑣𝑗−1

𝐷𝐶
> 𝑡𝑐𝑗  must hold.  

For 𝑣𝑗−1/𝐷𝐶 to be a candidate of )(* PT  in Case 1, ),(,1 TPj  must be increasing at 𝑣𝑗
−/𝐷𝐶 and so, the 

conditions 𝑣𝑗/𝐷𝐶 ≤ 𝑇1,𝑗(𝑃) and 
𝑣𝑗

𝐷𝐶
> 𝑡𝑐𝑗  must be satisfied. The conditions for Case 2, inequalities (6) and 

(8), are justified in a similar way. Now, let us consider 
jj tcPT )(,1
 in inequality (5). Because the demand 

rate D is also a function of retail price P, the inequality can be rewritten as  
 

𝑇1,𝑗(𝑃) = √
2𝑆+𝐶(𝑅−𝐼)(𝑎−𝑏𝑃)𝑡𝑐𝑗

2

(𝑎−𝑏𝑃)(𝐻+𝐶𝑅)
    ≥  𝑡𝑐𝑗  .      (10) 

Rearranging inequality (10), 

𝑃 ≥
𝑎

𝑏
−

2𝑆

𝑏(𝐻+𝐶𝐼)𝑡𝑐𝑗
2  .       (11) 

It is self evident that for any 𝑃 ≥
𝑎

𝑏
−

2𝑆

𝑏(𝐻+𝐶𝐼)𝑡𝑐𝑗
2, the inequality 

jj tcPT )(,1
 holds. Similarly, 

𝑣𝑗−1

𝐷𝐶
≤ 𝑇1,𝑗(𝑃) 

in inequality (5) can be rewritten as  

𝑣𝑗−1

𝐷𝐶
≤ √

2𝑆+𝐶(𝑅−𝐼)𝐷𝑡𝑐𝑗
2

𝐷(𝐻+𝐶𝑅)
     .      (12) 

For 𝑅 > 𝐼, we have the following quadratic inequality of D; 
 

𝑓(𝐷) = (𝑅 − 𝐼)𝐶3𝑡𝑐𝑗
2𝐷2 + 2𝑆𝐶2𝐷 − (𝐻 + 𝐶𝑅)𝑣𝑗−1

2 ≥ 0 .    (13) 
 

Because (𝑅 − 𝐼)𝐶3𝑡𝑐𝑗
2 > 0 and the discriminant of 𝑓(𝐷) is positive, we have following two real roots; 

𝐷 = 
−2𝑆𝐶2±√4𝑆2𝐶4+4𝐶3(𝑅−𝐼)𝑡𝑐𝑗

2(𝐻+𝐶𝑅)𝑣𝑗−1
2

2𝐶3(𝑅−𝐼)𝑡𝑐𝑗
2   .     (14) 

And therefore, the solution of inequality 𝑓(𝐷) ≥ 0, are as follows; 

𝐷 ≤ 
−2𝑆𝐶2−√4𝑆2𝐶4+4𝐶3(𝑅−𝐼)𝑡𝑐𝑗

2(𝐻+𝐶𝑅)𝑣𝑗−1
2

2𝐶3(𝑅−𝐼)𝑡𝑐𝑗
2  or 𝐷 ≥  

−2𝑆𝐶2+√4𝑆2𝐶4+4𝐶3(𝑅−𝐼)𝑡𝑐𝑗
2(𝐻+𝐶𝑅)𝑣𝑗−1

2

2𝐶3(𝑅−𝐼)𝑡𝑐𝑗
2  .    (15) 

Because the demand rate D is also a function of retail price P, the inequalities (15) can be rewritten as 

𝑃 ≥
𝑎

𝑏
+ 

2𝑆𝐶2+√4𝑆2𝐶4+4𝐶3(𝑅−𝐼)𝑡𝑐𝑗
2(𝐻+𝐶𝑅)𝑣𝑗−1

2

2𝑏𝐶3(𝑅−𝐼)𝑡𝑐𝑗
2  or 𝑃 ≤

𝑎

𝑏
+
2𝑆𝐶2−√4𝑆2𝐶4+4𝐶3(𝑅−𝐼)𝑡𝑐𝑗

2(𝐻+𝐶𝑅)𝑣𝑗−1
2

2𝑏𝐶3(𝑅−𝐼)𝑡𝑐𝑗
2  .    (16) 

For 𝑅 = 𝐼,  
𝑣𝑗−1

𝐷𝐶
≤ √

2𝑆

𝐷(𝐻+𝐶𝑅)
     .       (17) 
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Also, because the demand D is a function of retail price P, the inequality can be rewritten as 
 

𝑃 ≤
𝑎

𝑏
−
(𝐻+𝐶𝑅)𝑣𝑗−1

2

2𝑏𝑆𝐶2
 .       (18) 

Also, from 𝑇1,𝑗(𝑃) <
𝑣𝑗

𝐷𝐶
 in inequality (5), we have 

 

𝑎

𝑏
+ 

2𝑆𝐶2−√4𝑆2𝐶4+4𝐶3(𝑅−𝐼)𝑡𝑐𝑗
2(𝐻+𝐶𝑅)𝑣𝑗

2

2𝑏𝐶3(𝑅−𝐼)𝑡𝑐𝑗
2 < 𝑃 <

𝑎

𝑏
+ 

2𝑆𝐶2+√4𝑆2𝐶4+4𝐶3(𝑅−𝐼)𝑡𝑐𝑗
2(𝐻+𝐶𝑅)𝑣𝑗

2

2𝑏𝐶3(𝑅−𝐼)𝑡𝑐𝑗
2   for 𝑅 > 𝐼.    (19) 

 

𝑃 >
𝑎

𝑏
− 

(𝐻+𝐶𝑅)𝑣𝑗
2

2𝑏𝑆𝐶2
         for 𝑅 = 𝐼     (20) 

 

In a similar way, other price ranges are obtained from inequalities (6) to (9) and they are 
 

𝑃 <
𝑎

𝑏
− 

2𝑆

𝑏(𝐻+𝐶𝐼)𝑡𝑐𝑗
2 from 𝑇2,𝑗(𝑃) < 𝑡𝑐𝑗 .    (21) 

𝑃 >
𝑎

𝑏
− 

(𝐻+𝐶𝐼)𝑣𝑗
2

2𝑏𝑆𝐶2
 from 𝑇2,𝑗(𝑃) <

𝑣𝑗

𝐷𝐶
 .    (22) 

𝑃 ≤
𝑎

𝑏
− 

(𝐻+𝐶𝐼)𝑣𝑗−1
2

2𝑏𝑆𝐶2
 from 𝑇2,𝑗(𝑃) ≥

𝑣𝑗−1

𝐷𝐶
 .    (23) 

𝑃 ≥
𝑎

𝑏
− 

𝑣𝑗

𝑏𝐶𝑡𝑐𝑗+1
 from 𝑡𝑐𝑗+1 ≤

𝑣𝑗

𝐷𝐶
 .    (24) 

𝑃 >
𝑎

𝑏
− 

𝑣𝑗

𝑏𝐶𝑡𝑐𝑗
 from 𝑡𝑐𝑗 <

𝑣𝑗

𝐷𝐶
 .     (25) 

 

We conclude that )(,1 PT j
 determined with P value which satisfies all the three inequalities (11), (16) and 

(19) can be a candidate of )(* PT  for 𝑅 > 𝐼. Utilizing the price ranges in inequalities (11) to (25), we find 

the following price intervals which correspond to conditions (Cond. 1), (Cond. 2) and (Cond. 3). 
 

(PI-1): Price Interval on which )(, PT ji
 becomes a candidate for )(* PT .  

jPI1  = { 𝑃|𝑃 ≥
𝑎

𝑏
−

2𝑆

𝑏(𝐻+𝐶𝐼)𝑡𝑐𝑗
2} ∩ { 𝑃| 𝑃 ≥

𝑎

𝑏
+ 

2𝑆𝐶2+√4𝑆2𝐶4+4𝐶3(𝑅−𝐼)𝑡𝑐𝑗
2(𝐻+𝐶𝑅)𝑣𝑗−1

2

2𝑏𝐶3(𝑅−𝐼)𝑡𝑐𝑗
2  or  

𝑃 ≤
𝑎

𝑏
+

2𝑆𝐶2 − √4𝑆2𝐶4 + 4𝐶3(𝑅 − 𝐼)𝑡𝑐𝑗
2(𝐻 + 𝐶𝑅)𝑣𝑗−1

2

2𝑏𝐶3(𝑅 − 𝐼)𝑡𝑐𝑗
2   

}
 

 

 ∩

{
 

 

 𝑃| 
𝑎

𝑏
+ 

2𝑆𝐶2 −√4𝑆2𝐶4 + 4𝐶3(𝑅 − 𝐼)𝑡𝑐𝑗
2(𝐻 + 𝐶𝑅)𝑣𝑗

2

2𝑏𝐶3(𝑅 − 𝐼)𝑡𝑐𝑗
2 < 𝑃 

< 
𝑎

𝑏
+ 

2𝑆𝐶2+√4𝑆2𝐶4+4𝐶3(𝑅−𝐼)𝑡𝑐𝑗
2(𝐻+𝐶𝑅)𝑣𝑗

2

2𝑏𝐶3(𝑅−𝐼)𝑡𝑐𝑗
2

}        for Case 1(𝑅 > 𝐼)    (26) 

jPI1  ={ 𝑃|𝑃 ≥
𝑎

𝑏
−

2𝑆

𝑏(𝐻+𝐶𝐼)𝑡𝑐𝑗
2}  ∩ { 𝑃| 

𝑎

𝑏
− 

(𝐻+𝐶𝑅)𝑣𝑗
2

2𝑏𝑆𝐶2
< 𝑃 ≤

𝑎

𝑏
−
(𝐻+𝐶𝑅)𝑣𝑗−1

2

2𝑏𝑆𝐶2
   }   for Case 1(𝑅 = 𝐼)    (27) 

jPI1  ={ 𝑃|𝑃 <
𝑎

𝑏
− 

2𝑆

𝑏(𝐻+𝐶𝐼)𝑡𝑐𝑗
2}  ∩ { 𝑃| 

𝑎

𝑏
− 

(𝐻+𝐶𝐼)𝑣𝑗
2

2𝑏𝑆𝐶2
< 𝑃 ≤

𝑎

𝑏
− 

(𝐻+𝐶𝐼)𝑣𝑗−1
2

2𝑏𝑆𝐶2
    }  for Case 2         (28) 

 

(PI-2): Price Interval on which 𝑣𝑗−1/𝐷𝐶  becomes a candidate for )(* PT . 

jPI 2  = { 𝑃|𝑃 ≥
𝑎

𝑏
− 

𝑣𝑗−1

𝑏𝐶𝑡𝑐𝑗
}  ∩ { 𝑃| 

𝑎

𝑏
+
2𝑆𝐶2−√4𝑆2𝐶4+4𝐶3(𝑅−𝐼)𝑡𝑐𝑗

2(𝐻+𝐶𝑅)𝑣𝑗−1
2

2𝑏𝐶3(𝑅−𝐼)𝑡𝑐𝑗
2 < 𝑃 <

𝑎

𝑏
+  

  
2𝑆𝐶2+√4𝑆2𝐶4+4𝐶3(𝑅−𝐼)𝑡𝑐𝑗

2(𝐻+𝐶𝑅)𝑣𝑗−1
2

2𝑏𝐶3(𝑅−𝐼)𝑡𝑐𝑗
2 }  for Case 1(𝑅 > 𝐼)    (29) 

jPI 2 ={ 𝑃|𝑃 ≥
𝑎

𝑏
− 

𝑣𝑗−1

𝑏𝐶𝑡𝑐𝑗
}  ∩ { 𝑃| 𝑃 >

𝑎

𝑏
−
(𝐻+𝐶𝑅)𝑣𝑗−1

2

2𝑏𝑆𝐶2
   }                     for Case 1(𝑅 = 𝐼)    (30) 
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jPI 2 ={ 𝑃|𝑃 <
𝑎

𝑏
− 

𝑣𝑗−1

𝑏𝐶𝑡𝑐𝑗
}  ∩ { 𝑃| 𝑃 >

𝑎

𝑏
− 

(𝐻+𝐶𝐼)𝑣𝑗−1
2

2𝑏𝑆𝐶2
   }                     for Case 2          (31) 

(PI-3): Price Interval on which 𝑣𝑗
−/𝐷𝐶 becomes a candidate for )(* PT .  

jPI 3 ={ 𝑃|𝑃 >
𝑎

𝑏
− 

𝑣𝑗

𝑏𝐶𝑡𝑐𝑗
}  ∩ { 𝑃|𝑃 ≥  

𝑎

𝑏
+ 

2𝑆𝐶2+√4𝑆2𝐶4+4𝐶3(𝑅−𝐼)𝑡𝑐𝑗
2(𝐻+𝐶𝑅)𝑣𝑗

2

2𝑏𝐶3(𝑅−𝐼)𝑡𝑐𝑗
2  𝑜𝑟 𝑃 <

𝑎

𝑏
+ 

2𝑆𝐶2−√4𝑆2𝐶4+4𝐶3(𝑅−𝐼)𝑡𝑐𝑗
2(𝐻+𝐶𝑅)𝑣𝑗

2

2𝑏𝐶3(𝑅−𝐼)𝑡𝑐𝑗
2    } 

                   for Case 1(𝑅 > 𝐼)    (32) 

jPI 3 ={ 𝑃|𝑃 >
𝑎

𝑏
− 

𝑣𝑗

𝑏𝐶𝑡𝑐𝑗
}  ∩ { 𝑃| 𝑃 <

𝑎

𝑏
− 

(𝐻+𝐶𝑅)𝑣𝑗
2

2𝑏𝑆𝐶2
   }                      for Case 1(𝑅 = 𝐼)    (33) 

 

The price intervals in equalities (26) to (33) that we present have a significant role to solve the model. For 

example, we consider (PI-1). If jPIP 1 , )(, PT ji  satisfies condition (Cond. 1) and then it becomes a 

candidate for 𝑇∗(𝑃) . Substituting T with )(, PT ji  in ),(, TPji , we have a maximizing problem 

))(,( ,, PTP jiji  that is a single variable function of retail price P. Let )(,
0 Pji  = ))(,( ,, PTP jiji , 2,1=i  

and mj ,,2,1 = . Note that )(,
0 Pji  is valid only on the interval 𝑃 ∈ 𝑃𝐼1𝑗 . Similarly, if 𝑃 ∈ 𝑃𝐼2𝑗, then 

𝑣𝑗−1/𝐷𝐶  satisfies condition (Cond. 2). Substituting T with 𝑣𝑗−1/𝐷𝐶  in ),(, TPji , we have a single 

variable function ),( 1, DCvP jji − , 2,1=i  and mj ,,3,2 =  because 𝑣𝑗−1/𝐷𝐶 is a function of P. Also, 

if 𝑃 ∈ 𝑃𝐼3𝑗, then 𝑣𝑗
−/𝐷𝐶 satisfies condition (Cond. 3). Substituting T with 𝑣𝑗

−/𝐷𝐶 in ),(,1 TPj , also we 

have a single variable function ),(,1 DCvP jj

− , 1,,2,1 −= mj   because 𝑣𝑗
−/𝐷𝐶 is a function of P. So, 

an optimal solution ( ** ,TP ) which maximizes ),( TP  is found by searching over )(,
0 Pji , 

),( 1, DCvP jji −  and ),(,1 DCvP jj

− , and 

),(
,

TPmax.
TP
  =  









































−



−

 DC

v
Pmax.

DC

v
Pmax.Pmax.max.

j

j

j

PIP

j

ji

ji

PIP
ji

ji

PIP jjj

, ,, ),( ,1

     

3

1

,

,     

2
,

0

,     

1

.        (34) 

 

Now, we want to find an optimal retail price (𝑃∗) and replenishment cycle time (𝑇∗) which maximizes 

Π(𝑃, 𝑇) in (34). Recognizing that the above single variable functions have very complicated structure, the 
functions can be solved approximately by using numerical search method. Then, we present the following 

solution algorithm to determine the optimal retail price and replenishment cycle time. 
 

Solution Algorithm 

Step 1. For each 𝑇0 , 𝑇0 ≥ 𝑡𝑐𝑗 , its optimal retail price 𝑃1,𝑗  is determined from the corresponding price 

intervals. 

1.1. Determine 𝑃1,𝑗 which maximizes Π1,𝑗
0(𝑃) among the price intervals: 𝑃 ∈ 𝑃𝐼1𝑗  and 𝑃 ≤  𝑎/𝑏  

with 𝑇0 = 𝑇1,𝑗(𝑃), 𝑗 = 1, 2, ⋯ ,𝑚. 

1.2. Determine 𝑃1,𝑗  which maximizes Π1,𝑗(𝑃, 𝑣𝑗−1 𝐷𝐶⁄ ) among the price intervals: 𝑃 ∈ 𝑃𝐼2𝑗  and 

𝑃 ≤  𝑎/𝑏  with 𝑇0 = 𝑣𝑗−1 𝐷𝐶⁄ , 𝑗 = 2, 3, ⋯ ,𝑚. 

1.3. Determine 𝑃1,𝑗  which maximizes Π1,𝑗(𝑃, 𝑣𝑗
− 𝐷𝐶⁄ )  among the price intervals: 𝑃 ∈ 𝑃𝐼3𝑗  and 

𝑃 ≤  𝑎/𝑏  with 𝑇0 = 𝑣𝑗
− 𝐷𝐶⁄ , 𝑗 = 1, 2,   ⋯ ,𝑚 − 1. 

Step 2. For each 𝑇0 , 𝑇0 < 𝑡𝑐𝑗 , its optimal retail price 𝑃2,𝑗  is determined from the corresponding price 

intervals. 

2.1 Determine 𝑃2,𝑗 which maximizes Π2,𝑗
0(𝑃) among the price intervals: 𝑃 ∈ 𝑃𝐼1𝑗 and 𝑃 ≤  𝑎/𝑏  

with 𝑇0 = 𝑇2,𝑗(𝑃), 𝑗 = 1, 2, ⋯ ,𝑚. 
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Table 1. Results of Step 1 

j    𝑷 ∈ 𝑷𝑰𝟏𝒋     𝑷𝟏,𝒋   𝑻𝟏,𝒋(𝑷𝟏,𝒋)    𝚷(𝑷, 𝑻)   𝑷 ∈ 𝑷𝑰𝟐𝒋      𝑷𝟏,𝒋    𝒗𝒋−𝟏/𝑫𝑪   𝚷(𝑷, 𝑻) 𝑷 ∈ 𝑷𝑰𝟑𝒋    𝑷𝟏,𝒋     𝒗𝒋
−/𝑫𝑪   𝚷(𝑷, 𝑻) 

1 

2 

3 

[6.92, 7.99]    6.92    0.37       5071 

[4.51, 6.98]    5.49    0.25       7642 

∅          -       -           - 

-           -        -         - 

[6.98, 7.99]    6.98     0.39      4921 

[5.33, 7.99]    5.48     0.32      7738𝑎 

[4, 6.92]    5.53     0.16     7490 

[4, 4.51]    4.51     0.23     6435 

-       -         -        - 
𝑎 Optimal solution for Case 1. Also, this solution is the global optimal solution with its annual net profit $7,738.  

 

2.2 Determine 𝑃1,𝑗  which maximizes Π2,𝑗(𝑃, 𝑣𝑗−1 𝐷𝐶⁄ )  among the price intervals: 𝑃 ∈ 𝑃𝐼2𝑗  and 

𝑃 ≤  𝑎/𝑏  with 𝑇0 = 𝑣𝑗−1 𝐷𝐶⁄ , 𝑗 = 2, 3, ⋯ ,𝑚. 

Step 3. Select the optimal retail price (𝑃∗) and replenishment cycle time (𝑇∗) and which gives the maximum 

annual net profit among the values obtained in the previous steps. 

 

4. NUMERICAL EXAMPLE 

To illustrate the solution algorithms, the following problem is considered. 

(1) S = $ 50, C = $ 3, R = 15% (= 0.15), I = 10% (=0.10), H = $ 0.1. 

(2) Supplier's credit schedule: 
 

 

Total amount of purchase Credit period 
0 ≤ 𝑇𝐷𝐶 < $1,500 

$1,500 ≤ 𝑇𝐷𝐶 < $3,000 

$3,000 ≤ 𝑇𝐷𝐶 

𝑡𝑐1 = 0.1 

𝑡𝑐2 = 0.2 

𝑡𝑐3 = 0.3 

 

In order to solve the problem, the computer program written in C language was developed. And the solution 

procedure with 𝑎 = 10,000 , 𝑏 = 1,250  that is, 𝐷 = 10,000 − 1,250𝑃  and 𝑃 ≤  10,000/1,250 (= 8) 

generates the optimal solution (
*P ,

*T ) through the following steps. 
 

Step 1.   

1.1. Searching 𝑃1,𝑗 numerically which maximizes Π1,𝑗
0(𝑃) among the price intervals: 𝑃 ∈ 𝑃𝐼1𝑗  and 

𝑃 ≤  𝑎/𝑏  with 𝑇0 = 𝑇1,𝑗(𝑃), 𝑗 = 1, 2, 3 , we obtain 𝑃1,𝑗 as listed in Table 1. 

1.2. Searching 𝑃1,𝑗 numerically which maximizes Π1,𝑗(𝑃, 𝑣𝑗−1 𝐷𝐶⁄ ) among the price intervals: 𝑃 ∈

𝑃𝐼2𝑗  and 𝑃 ≤  𝑎/𝑏  with 𝑇0 = 𝑣𝑗−1 𝐷𝐶⁄ , 𝑗 = 2, 3, we obtain 𝑃1,𝑗 as listed in Table 1. 

1.3. Searching 𝑃1,𝑗  numerically which maximizes Π1,𝑗(𝑃, 𝑣𝑗
− 𝐷𝐶⁄ ) among the price intervals: 𝑃 ∈

𝑃𝐼3𝑗  and 𝑃 ≤  𝑎/𝑏  with 𝑇0 = 𝑣𝑗
− 𝐷𝐶⁄ , 𝑗 = 1, 2, we obtain 𝑃1,𝑗 as listed in Table 1. 

Step 2. 

2.1 Searching 𝑃2,𝑗 numerically which maximizes Π2,𝑗
0(𝑃) among the price intervals: 𝑃 ∈ 𝑃𝐼1𝑗  and 

𝑃 ≤  𝑎/𝑏  with 𝑇0 = 𝑇2,𝑗(𝑃), 𝑗 = 1, 2,  3, we obtain 𝑃2,𝑗 as listed in Table 2. 

2.2 Searching 𝑃2,𝑗  numerically which maximizes Π2,𝑗(𝑃, 𝑣𝑗−1 𝐷𝐶⁄ ) among the price intervals: 𝑃 ∈

𝑃𝐼2𝑗  and 𝑃 ≤  𝑎/𝑏  with 𝑇0 = 𝑣𝑗−1 𝐷𝐶⁄ , 𝑗 = 2, 3, we obtain 𝑃2,𝑗 as listed in Table 2. 

Step 3.  From the results of Step 1 and Step 2, an optimal solution (
*P ,

*T ) becomes (5.48, 0.32) with its 

maximum annual net profit of $7,738. 
 

Table 2. Results of Step 2 

j    𝑷 ∈ 𝑷𝑰𝟏𝒋     𝑷𝟏,𝒋   𝑻𝟏,𝒋(𝑷𝟏,𝒋)    𝚷(𝑷, 𝑻)   𝑷 ∈ 𝑷𝑰𝟐𝒋      𝑷𝟏,𝒋    𝒗𝒋−𝟏/𝑫𝑪   𝚷(𝑷, 𝑻) 

1 

2 

3 

∅           -       -           - 

∅           -       -           - 

[0.00, 4.80]    4.80    0.25       7160 

-           -       -           - 

∅           -       -           - 

∅           -       -           - 
𝑎 Optimal solution for Case 2(Annual net profit = $7,160). 
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5. CONCLUSION 

One of the important determinants of the length of the credit period is the size of the account. It is generally 

known that the free credit period tends to be shorter on large shipments than on smaller ones, probably because 

the supplier sells the larger quantities at lower prices. Rather than giving some price discount for larger amount 
of purchase, some manufacturers in Korea offer a longer credit terms. The supplier’s policies tend to make the 

retailer's order size larger by inducing him to qualify for a longer credit period in his payment. For a retailer 

who benefits from the supplier's credit term, it is common that he lowers the retail price to a certain degree 

expecting that he can earn more profits by stimulating the customer demand. This paper deals with an optimal 
pricing and ordering policy of retailer when the demand of the product can be represented by a linear decreasing 

function of the retail price, and the length of delay in payment is a function of the retailer's total amount of 

purchase. After formulating the mathematical model, we propose the solution procedure that leads to an 
optimal pricing and ordering policy. With an example problem, the validity of the algorithm is examined. The 

results show that the annual net profit could be increased through a wise selection of both the retail price and 

order size. 

There are several interesting opportunities for future researches in this subject. The model can be extended 
to the case of perishable product. While this paper focuses on one type of product, the case of joint ordering 

of multiple products for different credit terms could be suggested. 
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