Modifications of heterobeltiosis, heterosis, and hybrid vigour over check parent formulae to enhance judgment on hybrids

Usama M. Ghazy and Tahia A. Fouad
Sericulture Research Department, Plant Protection Research Institute, Agriculture Research Center, Giza, Egypt.

Abstract

Many researchers are using the heterosis, heterobeltiosis and hybrid vigour over check parent value formulae to determine the hybrid vigour for animals, plants and silkworm breeding. These formulae are ideal for determine the hybrid vigour for the positive direction of single trait. It is difficult using these formulae for multiple traits. Suggested modification for cardinal formulae were made as well as suggestion new formula for determines hybrid vigour for multiple traits. Modifications of hybrid vigour were made to facilitate judgment of best hybrids under study for multiple traits. Nineteen local hybrids of mulberry silkworm were prepared for these investigations in addition the imported Bulgarian hybrid. Comparison between the cardinal and the modifications formulae were applied for thirteen economic characters. Nine positive and four negative direction characters were observed. Modified formulae make the judgment of heterobeltiosis, heterosis and hybrid vigour over check parent value very facilitate for positive and negative traits.

© 2021 The Korean Society of Sericultural Sciences
Int. J. Indust. Entomol. 42(2), 33-45 (2021)

Received : 11 Mar 2021
Accepted : 24 Jun 2021

Keywords:

Modifications,
Multiple traits, Heterobeltiosis, Heterosis, Check parent, Hybrid vigour, Economic characters

Introduction

The mating or crossing of two different species is a process called hybridization, with the offspring known as hybrids. When a hybrid has characteristics superior to both parents it is said to have hybrid vigor or positive heterosis, which, of course, is the ultimate breeding goal. Genetic enhancement programs attempt to develop hybrids that are either superior to their parent species for individual traits or whose overall performance for several traits makes them economically more profitable than their parent species (Dunham and Masser, 2012).
In theory, heterosis may be "positive" or "negative". This is
largely an artificial distinction. Positive heterosis is generally desired for traits like yield, while negative heterosis is desired for traits such as early maturity. Three kinds of heterosis may be distinguished as mid parent (heterosis), standard variety (check parent), and better parent (heterobeltiosis). Standard variety (check parent) heterosis is measured by comparing the hybrid to existing high yield commercial variety (Hallauer and Eberhard, 1966 \& Hallauer and Miranda, 1988 and Acquaah 2019).
Evaluation of hybrids vigour formulae of heterobeltiosis, heterosis and check parents values are wildly used by many scientists and researches for plants (Gadag and Upadhyaya, 1995, Sekhar et al. 2010, Parameshwarappa et al. 2012, Abro et

*Corresponding author.

Usama M. Ghazy
Sericulture Research Department, Plant Protection Research Institute, Agriculture Research Center, Giza, Egypt.
Tel: +20-100846-4773
E-mail: Usama.ghazy@arc.sci.eg
© 2021 The Korean Society of Sericultural Sciences
al. 2014, Ayano et al. 2015, Kumar et al. 2016 a \& b, Kawamura et al. 2016, Bernardes et al. 2017, Kumar et al. 2017, Samayoa et al. 2017, Kanfany et al. 2018, Van Hulten et al. 2018, Adhikari et al. 2020 and Tyagi et al. 2020) ; animals (Proops et al. 2009, Wakchaure et al. 2015, Liu et al. 2017, Vandana et al. 2018, Getahun et al. 2019, Hanot et al. 2019) and silkworms (Ghazy, 1999 \& 2005, Talebi and Subramanya 2009, Tiwari and Singh 2016, Sharma and Bali 2019).
These investigations are attempted to enhance the judgment of hybrid vigour by modifying the formulae of heterobeltiosis, heterosis and hybrid vigour over check parent values. Also, suggest formula for determine the best hybrid for multiple traits using heterobeltiosis, heterosis and hybrid vigour over check parent values.

Materials and Methods

Nineteen local hybrids in addition to the imported hybrid from Bulgaria of mulberry silkworm Bombyx mori L., were used in

Table 1. Hybridization procedures and codes of the hybrids.

NO	hybridization	Cods
1	$J_{444} \times \mathrm{P}_{323}$	Eg_{1}
2	$\mathrm{L}_{444} \mathrm{X} \mathrm{J}_{444}$	Eg_{2}
3	$\mathrm{P}_{214} \mathrm{X}$ L444	Eg_{3}
4	$\mathrm{P}_{323} \times \mathrm{P}_{214}$	Eg_{4}
5	RBmch ${ }_{1} \mathrm{Z}_{345}$	Eg5
6	$\mathrm{Z}_{345} \mathrm{X}$ RBmch ${ }_{1}$	Eg6
7	$\mathrm{L}_{252} \mathrm{X} \mathrm{Z}_{345}$	Eg_{7}
8	$\mathrm{Z}_{345} \times \mathrm{L} 252$	Eg8
9	RBmj ${ }^{\text {X }} \mathrm{Z}_{345}$	Eg9
10	$\mathrm{Z}_{345} \mathrm{X}$ RBmj1	Eg10
11	${ }_{12 p c h X ~ C 2 p j ~}^{\text {a }}$	Eg11
12	RBmj ${ }^{\text {X }}$ I2pch	Eg12
13	$\mathrm{C}_{2 \mathrm{pj}} \times \mathrm{RBpj} 1$	Eg13
14	RBpj $1 \times$ l2mch	Eg14
15	$\mathrm{C}_{2 \mathrm{pj}} \mathrm{X} \mathrm{I}_{2} \mathrm{pch}$	Eg15
16	RBpj1 $\times 1{ }_{2} \mathrm{pech}$	Eg16
17	${ }_{12 \mathrm{pjj}} \mathrm{X}$ M ${ }_{245}$	Eg17
18	$\mathrm{Z}_{345} \mathrm{X} \mathrm{l}_{2 \mathrm{pj}}$	Eg18
19	1_{2} pj \times RBppch ${ }_{3}$	Eg_{19}
20	$\mathrm{H}_{1} \mathrm{XUVX} \mathrm{G}_{2} \mathrm{X} \mathrm{V}_{2}$	Im

this study. The procedure of hybridization methods and hybrid codes were illustrated in Table 1.

The pervious hybrids resulted from hybridization some local strain. These strains were obtained from breeding program of Sericulture Research Department (SRD) - Plant Protection Research Institute- Agricultural Research Center- Egypt.
Three replicates of each hybrid were reared. Each replicate contains 500 larvae. Polythene sheets were used as bottom and cover for young instars (Ghazy, 2008). As well as wet foam strips were applied. Chopped leaves were offer four times daily for young instars. While, whole leaves and mulberry shoots offered for fourth and fifth instars, respectively. Collapsible frames provided for mature larvae for spinning cocoons.
Temperature and humidity inside rearing rooms were registered. Average of temperature is $24.038^{\circ} \mathrm{C} \pm 0.144$ and humidity percentage is $53.764 \% \pm 0.970$. Thirteen economic characters were recorded for all hybrids. Nine of them are positive direction (high positive values desirable) and four are negative direction (negative and less values desirable). The positive characters were fresh cocoon weight (CW), fresh cocoon shell weight (CSW), fresh pupal weight (PW), cocoon shell ratio (CSR), silk productivity (SP), pupation ratio (PR), cocooning percentage (CP), cocoon crop for 10,000 fourth instar larvae/number (Crop/ N) and cocoon crop by weight for 10,000 fourth instar larvae (Crop/W). Negative characters were fifth instar duration by days (Fd), total larval duration by days (LD), number of cocoon per liter (C/L) and mortality percentage (MP).
Many of researchers worked in plants, animals and beneficial insects.....etc used the equation of Hayes et al. (1955) for determined the heterobeltiosis, heterosis and standard hybrid vigour.
It is good determine the hybrid vigour for positive direction trait. While it caused confused for determine the hybrid vigour for negative direction traits. In addition the equations determine the hybrid vigour for traits separately. So, it is difficult to determine the best hybrids for multiple characters especially when the evaluation involved positive and negative direction traits.

1. Cardinal equations of heterobeltiosis, heterosis and

 hybrid vigour over check value were as follows Hayes et al. (1955):$$
\begin{aligned}
& \text { Heterobeltiosis }=\frac{\overline{\mathrm{F}}_{1}-\mathrm{BPV}}{\text { BPV }} \times 100 \\
& \text { Heterosis }=\frac{\overline{\mathrm{F}}_{1}-\text { MPV }}{\text { MPV }} \times 100
\end{aligned}
$$

Hybrid vigour overCPV $=\frac{\overline{\mathrm{F}}_{1}-\mathrm{CPV}}{\mathrm{CPV}} \times 100$
Where: average of F_{1} hybrid
B P V: $\overline{\mathrm{F}}_{1}$ Better Parent Value
MPV: Mid Parent Value $\left(\mathrm{P}_{1}+\mathrm{P}_{2}\right) / 2$
CPV: Check Parent Value

Suggested equations

It is suggested that; the cardinal equations of Hayes et al. (1955) will multiply by 1 followed by the direction of the character. So in case of positive direction will multiply by +1 . And the negative direction will multiply by -1 .

Suggested modification for the heterobeltiosis, heterosis and hybrid vigour over check parent value equations for positive direction Characters:

$$
\begin{gathered}
\text { Heterobeltiosis }=+1 \times\left(\frac{\bar{F}_{1}-\mathrm{BPV}}{\mathrm{BPV}}\right) \mathrm{X} 100 \\
\text { Heterobeltiosis }=\left(\frac{\overline{\mathrm{F}}_{1}-\mathrm{BPV}}{\mathrm{BPV}}\right) \mathrm{X} 100 \\
\text { Heterosis }=+1 \quad \mathrm{X}\left(\frac{\overline{\mathrm{~F}}_{1}-\mathrm{MPV}}{\mathrm{MPV}}\right) \mathrm{X} 100 \\
\text { Heterosis }=\left(\frac{\overline{\mathrm{F}}_{1}-\mathrm{MPV}}{\mathrm{MPV}}\right) \mathrm{X} 100 \\
\text { Hybrid vigour over } \mathrm{CPV}=+1 \quad \mathrm{X} \quad\left(\frac{\overline{\mathrm{~F}}_{1}-\mathrm{CPV}}{\mathrm{CPV}}\right) \mathrm{X} 100 \\
\text { Hybrid vigour over CPV }=\left(\frac{\overline{\mathrm{F}}_{1}-\mathrm{CPV}}{\mathrm{CPV}}\right) \mathrm{C} 100
\end{gathered}
$$

Where: \bar{F}_{1} average of F_{1} hybrid
BPV: Better Parent Value
MPV: Mid Parent Value $\left(\mathrm{P}_{1}+\mathrm{P}_{2}\right) / 2$
CPV: Check Parent Value

Suggested modification for heterobeltiosis, heterosis and hybrid vigour over check parent value equations for negative direction Characters:

$$
\text { Heterobeltiosis }=-1 \quad \mathrm{X}\left(\frac{\bar{F}_{1}-\mathrm{BPV}}{\mathrm{BPV}}\right) \mathrm{X} 100
$$

$$
\begin{gathered}
\text { Heterobeltiosis }=\frac{\mathrm{BPV}-\overline{\mathrm{F}}_{1}}{\mathrm{BPV}} \mathrm{X} 100 \\
\text { Heterosis }=-1 \mathrm{X}\left(\frac{\overline{\mathrm{~F}}_{1}-\mathrm{MPV}}{\mathrm{MPV}}\right) \mathrm{X} 100 \\
\text { Heterosis }=\frac{\mathrm{MPV}-\overline{\mathrm{F}}_{1}}{\mathrm{MPV}} \mathrm{X} 100 \\
\text { Hybrid vigour overCPV }=-1 \mathrm{X}\left(\frac{\overline{\mathrm{~F}}_{1}-\mathrm{CPV}}{\mathrm{CPV}}\right) \mathrm{X} 100 \\
\text { Hybrid vigour overCPV }=\frac{\mathrm{CPV}-\overline{\mathrm{F}}_{1}}{\mathrm{CPV}} \mathrm{X} 100
\end{gathered}
$$

Estimation of hybrid vigour for multiple traits:

Formulae of heterobeltiosis, heterosis and hybrid vigour over check parent value did not apple determined the best hybrids for multiple characters together especially when some of characters are positive direction and others are negative direction. So that the next formulae were suggested to be facilitate judgment the best hybrids for multiple characters together.

Suggestion of new formula:

Ratio of positive value $(\mathrm{RPV})=\frac{\mathrm{NPC}}{\mathrm{TNC}} \times 100$
Where; NPC: Number of positive value characters
TNC: Total Number of Characters

It is easy to judge the best hybrid which owns 50% or more of ratio of positive value (RPV). After that the selected hybrids will arrangement according to total of hybrid vigour for all traits. The best hybrid is the higher values for RPV and total hybrid vigour values. Cardinal formulae and the suggested modifications were applied the collected data.

Results and Discussion

Performance of imported and nineteen local single hybrids for thirteen economic characters are mention in Table 2. It is so difficult to determine the best hybrid depending on the performance. There is no single hybrid superior for all characters together

Cardinal and modified hybrid vigour formulae of heterobeltiosis (hybrid vigour over better parent value).

Data found in Tables of 3 to 5 represented hybrid vigour over better parent value estimated by the cardinal and modified

Table 2. Performance of imported and nineteen local single hybrids for thirteen economic characters.

Character Hybrid	cW (g)	CSW (g)	PW (g)	CSR (\%)	SP (Cg/day)	$\begin{aligned} & \text { Fd } \\ & \text { (day) } \end{aligned}$	$\begin{gathered} \text { LD } \\ \text { (day) } \end{gathered}$	C/L (No)	PR (\%)	$\begin{aligned} & \text { CP } \\ & \text { (\%) } \end{aligned}$	Mort (\%)	Crop/N (No)	Crop/W (g)
$E g_{1}$	0.877	0.188	0.627	21.637	2.007	9.375	36.375	93.520	90.000	84.962	33.500	8496.200	7570.114
$E g_{2}$	1.129	0.233	0.834	20.773	2.594	9.000	36.688	88.480	94.000	84.118	15.000	8411.800	9501.128
Eg3	0.991	0.199	0.730	20.130	2.051	9.688	36.688	95.200	98.000	81.768	9.500	8176.800	8100.510
Eg4	1.558	0.279	1.216	17.882	2.795	10.000	37.000	105.840	95.000	72.727	28.500	7272.700	11327.230
Eg5	1.617	0.387	1.168	24.409	4.300	9.000	36.000	112.560	93.000	92.105	5.000	9210.500	14897.984
Eg6	1.171	0.249	0.860	21.606	2.390	10.344	37.344	115.360	96.500	65.171	6.250	6517.070	7295.549
$E g_{7}$	1.535	0.307	1.165	20.118	3.278	9.375	36.375	105.280	98.000	71.181	4.000	7118.100	10926.284
Eg8	1.460	0.275	1.123	18.977	3.168	8.688	35.688	104.720	94.500	81.712	6.301	8171.150	11997.159
Eg9	1.426	0.250	1.114	17.733	2.414	10.375	38.000	104.720	100.000	76.705	5.000	7670.500	10938.133
Eg10	1.572	0.340	1.169	21.770	3.631	9.375	36.375	94.640	95.000	55.714	30.000	5571.400	8758.241
Eg11	1.618	0.330	1.226	20.595	3.298	10.000	37.000	97.440	98.000	87.895	1.000	8789.500	14221.411
Eg12	1.021	0.245	0.714	24.297	2.921	8.375	35.375	135.520	99.000	65.574	1.000	6557.400	6695.105
Eg_{13}	1.553	0.278	1.212	18.040	2.784	10.000	37.000	114.240	94.000	89.286	2.000	8928.600	13866.116
Eg14	1.282	0.246	0.974	19.347	2.935	8.375	35.375	120.960	96.000	52.000	1.000	5200.000	6666.400
Eg15	1.270	0.246	0.963	19.536	2.619	9.375	36.375	106.400	94.000	65.104	2.500	6510.400	8274.718
Eg16	1.600	0.323	1.215	20.340	3.277	10.375	38.375	102.480	98.000	84.211	1.000	8421.100	13473.760
Eg17	0.998	0.214	0.722	21.689	2.285	9.375	36.375	109.760	99.000	82.915	5.000	8291.500	8274.917
Eg18	1.370	0.245	1.064	17.951	2.923	8.375	36.375	106.960	98.889	96.875	4.167	9687.500	13281.563
Eg19	1.266	0.257	0.947	20.260	2.481	10.375	37.375	108.080	96.000	58.974	2.500	5897.400	7466.108
Im	1.209	0.234	0.913	19.416	2.124	11.000	38.000	117.600	98.000	72.333	27.667	7233.300	8745.060

Where: $\mathrm{CW}=$ fresh cocoon weight, $\mathrm{CSW}=$ fresh cocoon shell weight, $\mathrm{PW}=$ fresh pupal weight, $\mathrm{CSR}=$ cocoon shell ratio, $\mathrm{SP}=$ silk productivity, $\mathrm{FD}=$ fifth larvae duration, $\mathrm{Fd}=$ fifth larvae duration, $\mathrm{LD}=$ total larval duration, $\mathrm{C} / \mathrm{L}=$ number of cocoons per liter, $\mathrm{PR}=$ pupation ratio, $\mathrm{CP}=$ cocooning percentage, Mort= moratlity percentage, Crop/ $\mathrm{N}=$ cocoon crop by number, Crop/ $\mathrm{W}=$ cocoon crop by weight.\& Eg ${ }_{1}=\mathrm{J}_{444} \mathrm{X} \mathrm{P}_{323}, \mathrm{Eg}_{2}=\mathrm{L}_{444} \mathrm{X}_{444}, \mathrm{Eg}_{3}=\mathrm{P}_{214} \mathrm{X} \mathrm{L}_{444}, \mathrm{Eg}_{4}=\mathrm{P}_{323} \mathrm{X} \mathrm{P} \mathrm{P}_{214}, \mathrm{Eg}_{5}=$

formulae.

Cardinal heterobeltiosis (hybrid vigour formula over better parent value).

Table 3 Showed the estimation of heterobeltiosis using the cardinal formulae. Regarding to CW, CSW, PW, CSR, SP, PR, CP, Crop/ N and Crop/W characters positive hybrid vigour were desirable. While characters of Fd, LD, C/L and MP the negative hybrid vigour are desirable.
Hybrids of Eg_{5} and Eg_{16} observed hybrid vigour for CW, CSW, PW, CSR, SP, CP, Crop/N and Crop/W. Also, the previous hybrids showed negative hybrid vigour for $\mathrm{Fd}, \mathrm{C} / \mathrm{L}$ and MP. Eg_{5} and Eg_{16} hybrids are promising.

These results are coincidence with those founded by Rahman et al. (2015) who estimated heterosis over better parent value among indigenous and newly developed bivoltine silkworm, Bombyx mori L. Eighteen combinations were evaluated. They stated that, $\mathrm{P}_{2} \times \mathrm{P}_{9}, \mathrm{P}_{1} \times \mathrm{P}_{9}, \mathrm{P}_{3} \times \mathrm{P}_{9}, \mathrm{P}_{4} \times \mathrm{P}_{9}, \mathrm{P}_{5} \times \mathrm{P}_{9}, \mathrm{P}_{6} \times \mathrm{P}_{9}$ exhibited positive hybrid vigour over better value for single cocoon weight, single shell weight and cocoon shell ratio.
Also Talebi et al. (2010) investigated the heterosis of silkworm (Bombyx mori L.) to define heterosis in the four silkworm races namely $\mathrm{C}_{108}, \mathrm{NB}_{4} \mathrm{D}_{2}$, Pure Mysore and Nistari for four important characters including larval weight, cocoon weight, shell weight and shell percentage. The traits of larval weight and cocoon weight showed highly significant heterosis in F_{1} hybrids ranging

Table 3. Estimation of heterobeltiosis (Hybrid vigour over better parent value) using the cardinal formulae.

Character hybrid	CW (g)	CSW (g)	PW (g)	CSR (\%)	SP (Cg/day)	$\begin{gathered} \text { Fd } \\ \text { (day) } \end{gathered}$	$\begin{gathered} \text { LD } \\ \text { (day) } \end{gathered}$	C/L (No)	PR (\%)	CP (\%)	Mort (\%)	Crop/N (No)	Crop/W (g)
$E g_{1}$	-25.580	-7.905	-31.275	24.424	-7.905	0.000	-1.689	-35.271	76.316	-8.163	-3.452	-3.452	-27.005
$E g_{2}$	-14.010	-5.541	-16.863	12.215	-5.541	0.000	-0.843	-17.708	-21.053	-4.082	-4.411	-4.411	-8.386
$E g_{3}$	-25.495	-27.737	-27.226	-2.953	-32.869	7.644	-0.843	-11.458	-34.483	-2.000	5.537	5.538	-21.359
$E g_{4}$	17.150	1.655	22.513	-21.144	-8.510	11.111	0.000	-7.805	96.552	-5.000	-6.699	-6.699	9.966
Eg5	20.243	41.068	15.825	19.495	72.417	-18.182	-2.703	5.236	-76.190	-3.125	39.999	39.998	89.814
Eg6	-12.919	-9.256	-14.709	5.773	-4.175	-5.964	0.930	7.853	-70.238	0.521	-0.942	-0.941	-7.048
$E g_{7}$	9.348	12.045	7.779	-1.513	11.166	4.167	-1.689	3.867	-68.000	2.083	-14.152	-14.152	-6.107
Eg8	4.046	0.232	3.893	-7.097	7.437	-21.023	-3.547	3.315	-49.592	-1.563	-1.451	-1.451	3.096
Eg9	6.017	-8.702	10.390	-13.187	-3.202	-5.682	2.703	-2.094	-80.000	0.000	6.535	6.535	79.702
Eg10	16.855	24.107	15.920	6.576	45.619	-14.773	-1.689	-17.157	20.000	-5.000	-22.619	-22.619	43.889
Eg11	38.880	49.644	38.924	-10.932	43.703	11.111	-5.128	-22.667	-66.667	0.000	-12.105	-12.105	57.952
Eg12	-12.389	10.989	-21.357	26.937	45.776	-23.864	-7.818	7.556	-95.833	10.000	5.765	5.765	-14.176
Eg13	72.452	34.806	91.868	-21.981	21.325	11.111	-2.632	0.000	-33.333	-6.000	-10.714	-10.714	54.006
Eg14	7.291	-1.462	10.197	-8.299	17.657	-16.250	-4.392	5.882	-95.238	-4.000	-27.778	-27.778	-7.035
Eg15	9.032	11.423	9.070	-15.513	14.133	4.167	-6.731	-15.556	-16.667	-4.082	-34.896	-34.896	-8.096
Eg16	37.334	46.446	37.681	2.813	63.541	-5.682	0.987	-10.294	-96.500	-2.000	16.960	16.960	86.523
Eg 17	-18.124	-6.621	-22.264	13.334	-0.396	3.786	-1.777	12.000	-61.718	-1.000	16.189	16.189	-4.870
Eg18	1.877	-10.769	5.431	-12.122	17.199	-16.250	-1.689	9.143	-68.096	-1.111	35.752	35.752	52.687
Eg 1_{19}	3.857	12.195	1.943	5.436	1.324	15.278	1.014	10.286	0.000	-4.000	-41.026	-41.026	-25.893

[^0]from 11 to 23% and 14 to 27% respectively. Shell weight showed low level of heterosis in F_{1} hybrids (14 to 20%).
In addition, Ghazy (2012) used fifteen races resulted from silkworm breeding program at Sericulture Research Department (SRD) for hybridization. Fourteen hybrids were obtained and coded as; Giza C, Giza D, Giza R, Giza S, Giza T, Giza U, Giza A, Giza V, Giza W, Giza P, Giza H, Giza L, Qanater 1 and Qanater 2. Data were analyzed by using formula of heterosis over better values. For positive direction traits, most hybrids exhibited positive hybrid vigour. And about the negative direction traits of fifth instar duration, larval duration and number of cocoons per liter all hybrid have negative values. Hybrids of Giza V, Giza C, Qanater 1 and Qanater 2 proved promising and could be used for commercial cocoon production.

Modified heterobeltiosis (formula hybrid vigour over better parent value)

Estimation of Heterobeltiosis (Hybrid vigour over better parent value) using the suggested modifications formulae were founded in Table 4. The results were not changed except the sign of negative direction character negative values turn on positive values and vice versa. Hybrids of $\mathrm{Eg}_{5}, \mathrm{Eg}_{16}, \mathrm{Eg}_{11}, \mathrm{Eg}_{13}, \mathrm{Eg}_{18}, \mathrm{Eg}_{12}, \mathrm{Eg}_{9}, \mathrm{Eg}_{10}, \mathrm{Eg}_{8}, \mathrm{Eg}_{7}$ and Eg ${ }_{15}$ showed highest RPV over 50. Table 5 represented the arrangements of selected hybrids of total heterobeltiosis and ratio of positive value. Hybrid Eg_{5} took the first order followed by $\mathrm{Eg}_{16}, \mathrm{Eg}_{11}, \mathrm{Eg}_{13}, \mathrm{Eg}_{18}, \mathrm{Eg}_{12}, \mathrm{Eg}_{9}, \mathrm{Eg}_{10}, \mathrm{Eg}_{8}$, Eg_{7} and Eg_{15} hybrids.

Table 4. Estimation of Heterobeltiosis (Hybrid vigour over better parent value) using the suggested modifications formulae.

Character hybrid	CW (g)	$\begin{gathered} \text { CSW } \\ \text { (g) } \end{gathered}$	$\begin{aligned} & \text { PW } \\ & \text { (g) } \end{aligned}$	$\begin{aligned} & \text { CSR } \\ & \text { (\%) } \end{aligned}$	$\begin{aligned} & \hline \mathrm{SP} \\ & (\mathrm{Cg} / \\ & \text { day) } \end{aligned}$	$\begin{gathered} \text { Fd } \\ \text { (day) } \end{gathered}$	$\begin{gathered} \text { LD } \\ \text { (day) } \end{gathered}$	$\begin{gathered} \text { C/L } \\ \text { (No) } \end{gathered}$	$\begin{aligned} & \text { PR } \\ & \text { (\%) } \end{aligned}$	$\begin{aligned} & \text { CP } \\ & \text { (\%) } \end{aligned}$	Mort (\%)	Crop/N (No)	Crop/W (g)	Positive character No.	$\begin{gathered} \text { RPV } \\ \% \end{gathered}$	Total hybrid vigour
Eg1	-25.580	-7.905	-31.275	24.424	-7.905	0.000	1.689	35.271	-76.316	-8.163	-3.452	-3.452	-27.005	4	30.769	-129.670
Eg_{2}	-14.010	-5.54	-16.863	12.215	-5.541	0.000	0.843	17.708	21.053	-4.082	-4.4	-4.411	-8.386	5	38.462	-11.427
$E g_{3}$	-25.49	27.737	7.226	-2.953	-32.86	-7.64	0.843	11.458	34.483	-2.000	5.537	5.538	-21.359	5	38.462	-89.424
$E g_{4}$	17.150	1.655	22.513	-21.14	-8.510	-11.11	0.000	7.805	-96.552	-5.000	-6.699	-6.699	9.966	6	46.154	-96.626
Eg5	20.243	41.068	15.825	19.495	72.417	18.182	2.703	-5.236	76.190	-3.125	39.999	39.998	89.814	11	84.615	427.574
Eg6	-12.919	-9.256	-14.709	5.773	-4.175	5.964	-0.930	-7.853	70.238	0.521	-0.942	-0.941	-7.048	4	30.769	23.723
E	9.348	12.045	7.779	-1.513	11.166	-4.167	1.689	-3.867	68.000	2.083	-14.152	-14.152	-6.107	7	53.846	68.153
E	4.04	0.232	3.893	-7.097	7.43	21.023	3.5	-3.315	49.592	-1.563	-1.45	-1.451	3.096	8	61.538	7
E	6.01	-8.702	10.390	-13.18	-3.202	5.68	-2	2.0	80.000	0.000	6.535	6.535	79.702	9	69.231	169.161
Eg10	16.855	24.10	15.920	6.57	45.61	14.	1.68	17.157	-20.000	-5.000	-2	-22.619	43.889	9	69.231	116.345
Eg 11^{1}	38.880	49.64	38.924	-10.93	43.7	-11.	5.128	22.667	66.667	0.000	-12.1	-12.105	57.952	9	69.231	277.310
Eg12	-12.389	10.989	-21.357	26.937	45.7	23.864	7.818	-7.556	95.833	10.000	5.765	5.765	-14.176	9	69.231	177.267
Eg13	72.452	34.806	91.868	-21.9	21.325	-11.111	2.632	0.000	33.333	-6.000	-10.714	-10.714	54.006	8	61.538	249.902
Eg14	7.291	-1.462	10.197	-8.299	17.657	16.250	4.392	-5.882	95.238	-4.000	-27.778	-27.778	-7.035	6	46.154	68.791
Eg15	9.032	11.423	9.070	-15.513	14.133	-4.167	6.731	15.556	16.667	-4.082	-34.896	-34.896	-8.096	7	53.846	-19.039
Eg16	37.334	46.446	37.681	2.813	63.541	5.682	-0.987	10.294	96.500	-2.000	16.960	16.960	86.523	11	84.615	417.747
Eg17	-18.124	-6.621	-22.264	13.334	-0.396	-3.786	1.777	-12.000	61.718	-1.000	16.189	16.189	-4.870	5	38.462	40.146
Eg18	1.877	-10.769	5.431	-12.122	17.199	16.250	1.689	-9.143	68.096	-1.111	35.752	35.752	52.687	9	69.231	201.587
Eg19	3.857	12.195	1.943	5.436	1.324	-15.278	-1.014	-10.286	0.000	-4.000	-41.026	-41.026	-25.893	6	46.154	-113.767

Where: $\mathrm{CW}=$ fresh cocoon weight, $\mathrm{CSW}=$ fresh cocoon shell weight, $\mathrm{PW}=$ fresh pupal weight, $\mathrm{CSR}=$ cocoon shell ratio, $\mathrm{SP}=$ silk productivity, $\mathrm{FD}=\mathrm{fifth}$ larvae duration, $\mathrm{Fd}=$ fifth larvae duration, $\mathrm{LD}=$ total larval duration, $\mathrm{C} / \mathrm{L}=$ number of cocoons per liter, $\mathrm{PR}=$ pupation ratio, $\mathrm{CP}=$ cocooning percentage, Mort= moratlity percentage, Crop/ $\mathrm{N}=$ cocoon crop by number, $\mathrm{Crop} / \mathrm{W}=$ cocoon crop by weight. $\mathrm{RPV}==$ ratio positive value \& Eg $\mathrm{E}_{1} \mathrm{~J}_{444} \mathrm{X}_{323}, \mathrm{Eg}_{2}=\mathrm{L}_{444} \mathrm{X} \mathrm{J}_{444}, \mathrm{Eg}_{3}=\mathrm{P}_{214} \mathrm{X} \mathrm{L}_{444}$, $E_{4}=P_{323} X P_{214}, E g 5=R B m c h 1 X Z_{345}, E g_{6}=Z_{345} X R B m c h 1, E g 7=L_{252} X Z_{345}, E g 8=Z_{345} X L_{252}, E g 9=R B m j 1 X Z_{345}, E g 10=Z_{345} X R B m j 1, E g 11=I_{2 p c h X} C_{2 p j}, E g_{12}=$ $R B m j_{1} X I_{2 p c h}, E g_{13}=C_{2 p j} X R B p j 1, E g_{14}=R B p j_{1} X I_{2 m c h}, E g_{15}=C_{2} p j X I 2 p c h, E g_{16}=R B p j_{1} X I_{2 p c h}, E g_{17}=I_{2} p j X M_{245}, E g_{18}=Z_{345} X I_{2 p j}, E g_{19}=I_{2 p j} X R B p c h 3, I m=$ $\mathrm{H}_{1} X U V X \mathrm{G}_{2} X \mathrm{~V}_{2}$.

Cardinal and modified heterosis formulae (hybrid vigour over mid parent value).

Tables of 6 to 8 showed the hybrid vigour over mid parent value estimated using the cardinal and modified formulae:

Cardinal heterosis (hybrid vigour over mid parent value) formula.

Estimation of heterosis using the cardinal formulae (Table 6). Most of local hybrids obtained positive hybrid vigour over mid parent value for positive direction characters and negative values for the negative direction characters.
Eg ${ }_{16}$ showed hybrid vigour over mid parent value for all characters under study. While, hybrid of Eg_{5} have hybrid vigour
over mid parent value for twelve characters.
The previous results are in accordance that found by Sajgotra et al. (2017) studied the heterosis on thermotolerant hybrids of bivoltine silkworm, Bombyx mori L. of twenty-eight silkworm bivoltine hybrids for some positive and negative characters. Some hybrids exhibited heterosis over mid parent value. The used the evaluation index equation to determine the best hybrids.
Hybrid vigour over mid parent value two bivoltine and three monovoltine inbred have been evaluated. Four hybrids were crossed during Autumn seasons. It could be concluded that, hybrid C was the best for cocoon weight, cocoon shell weight, pupal weight, cocoon shell ratio, while hybrid D was the better for cocoon weight, cocoon shell weight, pupal weight over the

Table 5. Arrangements of selected hybrids of total heterobeltiosis and ratio of positive value.

Character hybrid	$R P V \%$	Total of hybrid vigour	Serial No.
Eg_{5}	84.615	427.574	1
Eg_{16}	84.615	417.747	2
Eg_{11}	69.231	277.310	3
Eg_{13}	61.538	249.902	4
Eg_{18}	69.231	201.587	5
Eg_{12}	69.231	177.267	6
Eg_{9}	69.231	169.161	7
Eg 10	69.231	116.345	8
Eg_{8}	61.538	77.987	9
Eg_{7}	53.846	68.153	10
Eg 15	53.846	-19.039	11

Where: $\mathrm{RPV}=$ ratio positive value, $\mathrm{Eg} 5=\mathrm{RBmch} 1 \mathrm{X} \mathrm{Z}_{345}, \mathrm{Eg}_{7}=\mathrm{L}_{252} \quad \mathrm{X} Z_{345}$,

 RBpj1 ${ }^{\text {X }}$ I2pch, $^{2} \mathrm{Eg}_{18}=\mathrm{Z}_{345}$ X I2pj.
mid parent values (Ghazy and Fouda 2006).

Modified heterosis (hybrid vigour over mid parent value) formulae.

Data in Table 7. Observed the estimation of heterosis (Hybrid vigour over mid parent value) using the suggested modifications formulae. No differentiation caused in results of positive direction characters. Also the values of negative direction characters did not change, while the signs were reversed. So, positive values were preferred for both positive and negative direction characters. Eg5 and Eg ${ }_{16}$ hybrids showed hybrid vigour for thirteen and twelve traits together, respectively. Eighteen hybrids acquired over 50 percent for RPV.
Arrangements of selected hybrids of total heterosis and ratio of positive value were founded in Table 8. Hybrid Eg_{5} was the highest total of hybrid vigour for all traits, followed by Eg_{16}, $E g_{11}, \mathrm{Eg}_{13}, \mathrm{Eg}_{18}, \mathrm{Eg}_{9}, \mathrm{Eg}_{10}, \mathrm{Eg}_{12}, \mathrm{Eg}_{8}, \mathrm{Eg}_{7}, \mathrm{Eg}_{14}, \mathrm{Eg}_{15}, \mathrm{Eg}_{17}, \mathrm{Eg}_{6}$, $\mathrm{Eg}_{2}, \mathrm{Eg}_{4}$ and Eg_{19} hybrids.

Cardinal and modified hybrid vigour formulae over check parent value

Hybrid vigour over check parent value were evaluated according to cardinal and modified hybrid vigour formulae
founded in Tables of 9 to 11.

Cardinal hybrid vigour formula over check parent value

Estimation of hybrid vigour over check parent value using the cardinal formula was represented in Table 9. Hybrids of Eg_{5} and Eg ${ }_{11}$ obtained hybrid vigour for twelve characters and hybrid Eg_{16} for eleven characters.
These results are in agreement with the findings of Ghazy (2007) \& Rajalakshmi et al. (1998) who studied heterosis on rearing and cocoon characters of some hybrids of silkworm, Bombyx mori L. Data revealed that some hybrids were highly promising over the existing checks hybrid.
Also, Ghazy (2012) used fifteen races resulted from silkworm breeding program at Sericulture Research Department (SRD) for hybridization. Fourteen hybrids were obtained and coded as; Giza C, Giza D, Giza R, Giza S, Giza T, Giza U, Giza A, Giza V, Giza W, Giza P, Giza H, Giza L, Qanater 1 and Qanater 2. The traits of cocoon weight, cocoon shell weight, pupal weight, cocoon shell ratio, silk productivity, fifth instar duration, number of cocoon per liter and pupation ratio were evaluated. Data were analyzed by using three formulae of heterosis over check parent values. Only K X D hybrid showed hybrid vigour over check hybrid Bulgaria 2 for all characters except pupal weight trait. Also, most of single hybrid represented hybrid vigour over check hybrid Bulgaria 2 for fifth instar duration, total larval duration and pupation ratio.

Modified hybrid vigour formulae over check parent value.

Estimation of hybrid vigour over check parent value using the suggested modifications formulae (Table, 10). No changes happen in results except the sign of negative direction traits become positive instead of negative vice versa.
Arrangements of selected hybrids of total hybrid vigour over check parent values and ratio of positive value were appeared in Table 11. Hybrid Eg5 took the first order followed by $\mathrm{Eg}_{11}, \mathrm{Eg}_{16}$, $\mathrm{Eg}_{13}, \mathrm{Eg}_{18}, \mathrm{Eg}_{8}, \mathrm{Eg}_{7}, \mathrm{Eg}_{9}, \mathrm{Eg}_{10}, \mathrm{Eg}_{4}, \mathrm{Eg}_{2}, \mathrm{Eg}_{15}, \mathrm{Eg}_{17}, \mathrm{Eg}_{12}, \mathrm{Eg}_{14}$, $\mathrm{Eg}_{1}, \mathrm{Eg}_{6}$ and Eg_{3} hybrids.

Conclusion

Applications of cardinal formulae of heterobeltiosis, heterosis and hybrid vigour over check parent value are good

Table 6. Estimation of heterosis (Hybrid vigour over mid parent value) using the cardinal formulae.

Character hybrid	$\begin{aligned} & \text { CW } \\ & \text { (g) } \end{aligned}$	CSW (g)	PW (g)	CSR (\%)	SP (Cg/day)	Fd (day)	$\begin{gathered} \text { LD } \\ \text { (day) } \end{gathered}$	$\begin{aligned} & \text { C/L } \\ & \text { (No) } \end{aligned}$	PR (\%)	$\begin{aligned} & \text { CP } \\ & \text { (\%) } \end{aligned}$	Mort (\%)	Crop/N (No)	Crop/W (g)
$E g_{1}$	-13.271	-4.513	-16.658	8.005	-6.391	2.041	-1.689	-27.862	63.212	-9.091	2.395	2.395	-10.676
Eg_{2}	-9.364	3.437	-12.932	15.720	5.344	-2.041	-0.843	-29.778	-26.829	4.444	7.844	7.844	-1.553
$E g_{3}$	-25.038	-23.897	-26.848	2.562	-29.302	7.644	-0.843	-18.072	-47.945	7.692	12.413	12.413	-15.759
$E g_{4}$	43.312	20.287	53.450	-17.629	8.259	11.111	0.000	-11.682	55.946	-5.000	-6.417	-6.416	34.213
Eg5	27.467	54.716	22.124	24.102	91.955	-19.553	-4.478	-6.729	-78.261	-2.105	69.847	69.846	119.290
Eg6	-7.687	-0.477	-10.070	9.850	6.684	-7.540	-0.911	-4.408	-72.826	1.579	20.178	20.178	7.387
$E g_{7}$	11.669	13.890	11.512	1.970	20.467	-6.250	-1.689	1.075	-78.667	8.889	13.362	13.362	25.766
Eg8	6.254	1.883	7.491	-3.812	16.426	-13.125	-3.547	0.538	-66.395	5.000	30.133	30.133	38.092
Eg9	30.205	14.011	36.878	-11.798	16.172	-5.682	1.333	-5.316	-81.333	2.041	33.787	33.787	84.992
Eg10	43.515	54.982	43.735	8.281	74.764	-14.773	-3.000	-14.430	12.001	-3.061	-2.825	-2.825	48.124
Eg11	56.681	54.494	61.938	-2.542	53.447	0.000	-5.128	-25.000	-94.667	4.255	8.512	8.512	75.278
Eg12	-11.702	23.140	-20.242	41.463	64.146	-25.140	-8.562	0.363	-96.581	15.116	9.290	9.290	-10.878
Eg13	77.882	49.874	93.931	-15.909	40.734	0.000	-3.896	-7.901	-87.330	-5.051	3.821	3.821	83.773
Eg14	25.672	18.606	29.687	-5.351	41.217	-20.238	-5.667	-2.262	-95.965	-2.538	-21.212	-21.212	0.567
Eg15	23.007	15.035	27.138	-7.554	21.872	-6.250	-6.731	-18.103	-86.667	0.000	-19.625	-19.625	1.985
Eg16	59.173	67.487	61.927	4.510	78.780	-5.682	-0.325	-14.685	-96.829	3.158	25.688	25.688	102.454
Eg17	-5.729	6.837	-9.454	14.353	8.929	-1.487	-3.043	-1.754	-74.350	1.538	22.108	22.108	14.230
Eg18	6.891	-2.816	9.801	-8.469	22.084	-20.238	-3.000	4.372	-78.104	0.907	69.913	69.913	83.990
Eg19	6.710	14.453	5.119	6.599	4.621	9.211	-0.333	-14.790	-67.868	0.524	-31.170	-31.170	-20.461

Where: $\mathrm{CW}=$ fresh cocoon weight, $\mathrm{CSW}=$ fresh cocoon shell weight, $\mathrm{PW}=$ fresh pupal weight, $\mathrm{CSR}=$ cocoon shell ratio, $\mathrm{SP}=$ silk productivity, $\mathrm{FD}=\mathrm{fifth}$ larvae duration, $\mathrm{Fd}=$ fifth larvae duration, $\mathrm{LD}=$ total larval duration, $\mathrm{C} / \mathrm{L}=$ number of cocoons per liter, $\mathrm{PR}=$ pupation ratio, $\mathrm{CP}=$ cocooning percentage, Mort $=$ moratlity percentage, Crop/N=cocoon crop by number, Crop/ $W=$ cocoon crop by weight.\& Eg $1=J_{444} X P_{323}, E_{2}=L_{444} X J_{444}, E g g_{3}=P_{214} X L_{444}, E_{4}=P_{323} X P_{214}, E_{5}=$ $R B m c h 1 X_{345}, E g_{6}=Z_{345} X$ RBmch $1, E g_{7}=L_{252} X Z_{345}, E g_{8}=Z_{345} X L_{252}, E g_{9}=R B m j_{1} X Z_{345}, E g_{10}=Z_{345} X R B m j 1, E g_{11}=I_{2 p c h X ~ C} C_{2 p j}, E g_{12}=R B m j_{1} X I_{2 p c h}, E g_{13}=$

for determine the hybrid vigour for single trait, especially for positive direction characters. Using these formulae are difficult to determine the hybrids vigour for all traits together. Suggested modification made the judgment of hybrid vigour for multiple traits easy, also determine the best hybrids facilitated. Hybrids of $\mathrm{Eg}_{5}, \mathrm{Eg}_{16}, \mathrm{Eg}_{11}, \mathrm{Eg}_{13}, \mathrm{Eg}_{18}, \mathrm{Eg}_{12}, \mathrm{Eg}_{9}, \mathrm{Eg}_{10}, \mathrm{Eg}_{8}, \mathrm{Eg}_{7}$ and Eg_{15} were the best hybrids for heterobeltiosis. For heterosis, hybrid of Eg_{5} was the highest total of heterosis for all traits, followed by Eg ${ }_{16}$, $\mathrm{Eg}_{11}, \mathrm{Eg}_{13}, \mathrm{Eg}_{18}, \mathrm{Eg}_{9}, \mathrm{Eg}_{10}, \mathrm{Eg}_{12}, \mathrm{Eg}_{8}, \mathrm{Eg}_{7}, \mathrm{Eg}_{14}, \mathrm{Eg}_{15}, \mathrm{Eg}_{17}, \mathrm{Eg}_{6}$, $\mathrm{Eg}_{2}, \mathrm{Eg}_{4}$ and Eg_{19} hybrids. According to hybrid vigour over check parent value, hybrid Eg_{5} took the first order followed by Eg_{11}, $\mathrm{Eg}_{16}, \mathrm{Eg}_{13}, \mathrm{Eg}_{18}, \mathrm{Eg}_{8}, \mathrm{Eg}_{7}, \mathrm{Eg}_{9}, \mathrm{Eg}_{10}, \mathrm{Eg}_{4}, \mathrm{Eg}_{2}, \mathrm{Eg}_{15}, \mathrm{Eg}_{17}, \mathrm{Eg}_{12}$, $\mathrm{Eg}_{14}, \mathrm{Eg}_{19}, \mathrm{Eg}_{6}$ and Eg_{3} hybrids.

References

Abro S, Laghari S, Deho ZA, Manjh MA (2014) To estimates heterosis and heterobeltosis of yield and quality traits in upland cotton. Journal of Biology Agriculture and Healthy Care 4 (6),19-22.
Adhikari A, Ibrahim AM, Rudd JC, Baenziger PS, Sarazin JB (2020). Estimation of heterosis and combining abilities of US winter wheat germplasm for hybrid development in Texas. Crop Science 60, 788803.

Acquaah G. (2019) Principles of Plant Genetics and Breeding. 2nd ed. John Wiley \& Sons, Ltd.
Ayano A, Alamirew S, Tesfaye A (2015) Heterosis and combining ability of fruit and bean characters in Ethiopian origin coffee (Coffea arabica L.) hybrids. Journal of Biology, Agriculture and Healthcare 5

Table 7. Estimation of heterosis (hybrid vigour over mid parent value) using the suggested modifications formulae.

Character Hybrid	CW (g)	CSW (g)	PW (g)	$\begin{gathered} \text { CSR } \\ \text { (\%) } \end{gathered}$	$\begin{aligned} & \mathrm{SP} \\ & (\mathrm{Cg} / \\ & \text { day) } \end{aligned}$	$\begin{gathered} \text { Fd } \\ \text { (day) } \end{gathered}$	$\begin{gathered} \text { LD } \\ \text { (day) } \end{gathered}$	$\begin{aligned} & \text { C/L } \\ & \text { (No) } \end{aligned}$	$\begin{aligned} & \text { PR } \\ & \text { (\%) } \end{aligned}$	$\begin{aligned} & \text { CP } \\ & \text { (\%) } \end{aligned}$	Mort (\%)	Crop/N (No)	Crop/W (g)	Positive character No.	RPV Total \%ybrid vigour
$E g_{1}$	-13.271	-4.513	-16.658	8.005	-6.391	-2.041	1.689	27.862	-63.212	-9.091	2.395	2.395	-10.676	5	38.462-83.505
$E g_{2}$	-9.364	3.437	-12.932	15.720	5.344	2.041	0.843	29.778	26.829	4.444	7.844	7.844	-1.553	10	76.92380 .274
Eg_{3}	-25.038	-23.89	-26.84	2.562	-29.302	-7.644	0.843	18.072	47.945	7.692	12.413	12.413	-15.759	7	53.846-26.547
Eg_{4}	43.312	20.287	53.450	-17.629	8.259	-11.111	0.000	11.682	-55.946	-5.000	-6.417	-6.416	34.213	7	53.84668 .683
Eg5	27.467	54.716	22.124	24.102	91.955	19.553	4.478	6.729	78.261	-2.105	69.847	69.846	119.290	12	92.308586 .261
Eg6	-7.687	-0.477	-10.070	9.850	6.684	7.540	0.911	4.408	72.826	1.579	20.178	20.178	7.387	10	76.923133 .307
Eg_{7}	11.669	13.890	11.512	1.970	20.467	6.250	1.689	-1.075	78.667	8.889	13.362	13.362	25.766	12	92.308206 .417
Eg8	6.254	1.883	7.491	-3.812	16.426	13.125	3.547	-0.538	66.395	5.000	30.133	30.133	38.092	11	84.615214 .128
Eg9	30.205	14.011	36.878	-11.798	16.172	5.682	-1.333	5.316	81.333	2.041	33.787	33.787	84.992	11	84.615331 .073
Eg10	43.515	54.982	43.735	8.281	74.764	14.773	3.000	14.430	-12.001	-3.061	-2.825	-2.825	48.124	9	69.231284 .893
Eg11	56.681	54.494	61.938	-2.542	53.447	0.000	5.128	25.000	94.667	4.255	8.512	8.512	75.278	12	92.308445 .371
$E g_{12}$	-11.702	23.140	-20.242	41.463	64.146	25.140	8.562	-0.363	96.581	15.116	9.290	9.290	-10.878	9	69.231249 .543
Eg13	77.882	49.874	93.931	-15.909	40.734	0.000	3.896	7.901	87.330	-5.051	3.821	3.821	83.773	11	84.615432 .005
Eg14	25.672	18.606	29.687	-5.351	41.217	20.238	5.667	2.262	95.965	-2.538	-21.212	-21.212	0.567	9	69.231189 .568
Eg15	23.007	15.035	27.138	-7.554	21.872	6.250	6.731	18.103	86.667	0.000	-19.625	-19.625	1.985	10	76.923159 .985
Eg16	59.173	67.487	61.927	4.510	78.780	5.682	0.325	14.685	96.829	3.158	25.688	25.688	102.454	11	84.615546 .386
Eg17	-5.729	6.837	-9.454	14.353	8.929	1.487	3.043	1.754	74.350	1.538	22.108	22.108	14.230	11	84.615155 .554
Eg18	6.891	-2.816	9.801	-8.469	22.084	20.238	3.000	-4.372	78.104	0.907	69.913	69.913	83.990	10	76.923349 .185
Eg19	6.710	14.453	5.119	6.599	4.621	-9.211	0.333	14.790	67.868	0.524	-31.170	-31.170	-20.461	9	69.23129 .007

Where: $\mathrm{CW}=$ fresh cocoon weight, $\mathrm{CSW}=$ fresh cocoon shell weight, $\mathrm{PW}=$ fresh pupal weight, $\mathrm{CSR}=$ cocoon shell ratio, $\mathrm{SP}=$ silk productivity, $\mathrm{FD}=\mathrm{fifth}$ larvae duration, $\mathrm{Fd}=$ fifth larvae duration, $\mathrm{LD}=$ total larval duration, $\mathrm{C} / \mathrm{L}=$ number of cocoons per liter, $\mathrm{PR}=$ pupation ratio, $\mathrm{CP}=$ cocooning percentage, Mort $=$ moratlity percentage, Crop/ $N=$ cocoon crop by number, Crop/ $\mathrm{W}=$ cocoon crop by weight. $\mathrm{RPV}==$ ratio positive value \& $\mathrm{Eg}_{1}=\mathrm{J}_{444} \mathrm{XP}_{323}, \mathrm{Eg}_{2}=\mathrm{L}_{444} \mathrm{X} \mathrm{J}_{444}, \mathrm{Eg}_{3}=\mathrm{P}_{214} \mathrm{X} \mathrm{L444}$,

 $H_{1} X U V X G_{2} X V_{2}$.
(11), 203-213.

Bernardes JP, Stelkens RB, Greig D (2017) Heterosis in hybrids within and between yeast species. Journal of Evolutionary Biology 30, 538548.

Dunham R, Masser M (2012) Production of hybrid catfish. Southern Regional Aquaculture Center 190, 1-7.
Gadag RN, Upadhyaya HD (1995) Heterosis in soybean (Glycine max (L.) Merrill). Indian Journal of Genetics and Plant Breeding 55 (3), 308-314.
Getahun D, Alemneh T, Akeberegn D, Getabalew M, Zewdie D (2019) Importance of hybrid vigor or heterosis for animal breeding. Biochemistry and Biotechnology Research 7 (1), 1-4.
Ghazy UMM (1999) Isolation and evaluation of pure lines of mulberry
silkworm, Bombyx mori L. M. Sc., Economic Entomology (Sericulture), Faculty of Agriculture, Cairo University.
Ghazy UMM (2005) Hybridization of some local entries of mulberry silkworm, Bombyx mori L. Ph.D., Economic Entomology (Sericulture), Faculty of Agriculture, Cairo University.
Ghazy UMM, Fouda MM (2006) Evaluation of four local simple hybrids of silkworm Bombyx mori L. Bulletin Entomology Society Egypt 83, 191-199.

Ghazy UMM (2007) Manifestation of hybrid vigour in different crosses of the silkworm, Bombyx mori L. Proc. $2^{\text {nd }}$ Inter. Conf. Ent. Soc. Egypt I, 175-183.
Ghazy UMM (2008) Rearing first three instars of mulberry silkworm, Bombyx mori L. under Polythene Cover. Bull. Ent. Soc. Egypt 85,

Table 8. Arrangements of selected hybrids of total heterosis and ratio of positive value.

Character hybrid	RPV \%	Total of hybrid vigour	Serial No.
Eg5	92.308	586.261	1
Eg16	84.615	546.386	2
Eg11	92.308	445.371	3
Eg13	84.615	432.005	4
Eg18	76.923	349.185	5
Eg9	84.615	331.073	6
Eg10	69.231	284.893	7
Eg ${ }_{12}$	69.231	249.543	8
Eg8	84.615	214.128	9
Eg_{7}	92.308	206.417	10
Eg14	69.231	189.568	11
Eg15	76.923	159.985	12
Eg ${ }_{17}$	84.615	155.554	13
Eg6	76.923	133.307	14
Eg_{2}	76.923	80.274	15
Eg_{4}	53.846	68.683	16
Eg19	69.231	29.007	17
Eg_{3}	53.846	-26.547	18

Where: $\mathrm{RPV}=$ ratio positive value, $\mathrm{Eg}_{2}=\mathrm{L}_{444} \mathrm{X} \mathrm{J}_{444}, \mathrm{Eg}_{3}=\mathrm{P}_{214} \mathrm{X} \mathrm{L}_{444}, \mathrm{Eg}_{4}=$ $\mathrm{P}_{323} \mathrm{X} \mathrm{P}_{214,} \mathrm{Eg}_{5}=\mathrm{RBm} \mathrm{Rh}_{1} \mathrm{X} \mathrm{Z}_{345}, \mathrm{Eg}_{6}=\mathrm{Z}_{345} \mathrm{X}$ RBmch $1, \mathrm{Eg}_{7}=\mathrm{L}_{252} \mathrm{X} \mathrm{Z}_{345}$, $\mathrm{Eg}_{8}=\mathrm{Z}_{345} \mathrm{X} \mathrm{L}_{252}, \mathrm{Eg}_{9}=\mathrm{RBmj}_{1} \mathrm{X} \mathrm{Z}_{345}, \mathrm{Eg}_{10}=\mathrm{Z}_{345} \mathrm{X}$ RBmj $1, \mathrm{Eg}_{11}=\mathrm{I}_{2} \mathrm{pch} X$ $C_{2} p j, E_{12}=R B m j_{1} X_{2 p c h}, E_{13}=C_{2 p j} X R B p j 1, E g_{14}=R B p j_{1} X I_{2} m c h, E g_{15}=$ $C_{2 p j} X I_{2 p c h}, E g_{16}=R B p_{1} X_{2 p c h}, \mathrm{Eg}_{17}=I_{2 p j} X M_{245}, E g_{18}=Z_{345} X I_{2 p j}$, Eg ${ }_{19}=$ I2pj X RBpch $_{3}$.

271-279.
Ghazy UMM (2012) Estimation of hybrid vigor of some Egyptian single local hybrids of mulberry silkworm, Bombyx mori L. International Journal of Industrial Entomology 25 (2), 147-151.
Hallauer AR, Eberhard SA (1966) Evaluation of synthetic varieties of maize for yield. Crop Sci. 6,423-427.
Hallauer AR, Miranda JB (1988) Quantitative genetics in maize breeding. 2nd ed. Iowa State Univ. Press. Ames, IA.
Hanot P, Herrel A, Guintard C, Cornette R (2019) Unravelling the hybrid vigor in domestic equids: the effect of hybridization on bone shape variation and covariation. BMC Evolutionary Biology 19 (188), 1-13.

Hayes HK, Immer FR, Smith DC (1955) Methods of Plant Breeding. Mc graw Hill Book Company, New York 551.

Kanfany G, Fofana A, Tongoona P, Danquah A, Offei S, Danquah E, Cisse N (2018) Estimates of combining ability and heterosis for yield and its related traits in pearl millet inbred lines under downy mildew prevalent areas of Senegal. International Journal of Agronomy, 1-12.
Kawamura K, Kawanabe T, Shimizu M, Nagano A, Saeki N, Okazaki K, Kaji M, Dennis E, Osabe K, Fujimoto R (2016) Genetic distance of inbred lines of Chinese cabbage and its relationship to heterosis. Plant Gene., 5, 1-7.
Kumar N, Paul S, Chaudhary HK, Sood VK, Mishra SK, Singh AD, Devi R (2016 a) Combining ability, gene action and heterosis for seed yield and its attributes in linseed (Linum usitatissimum L.). SABRAO Journal of Breeding \& Genetics 48 (4), 434-444.

Kumar P, Singh N, Singh PK (2016 b) A study on heterosis in tomato (Solamum bycopersicum L.) for yield and its component traits. International Journal of Current Microbiology and Applied Sciences 6 (7), 1318-1325.
Kumar GV, Vanaja M, Babu A, Premkumar Jyothi LN, Sarkar B (2017) Heterosis and combining ability studies in blackgram (Vigna mungo L. Hepper) under alfisols of SAT region, India. Electronic Journal of Plant Breeding 8(2), 541-547.
Liu X, Liang H, Li Z, Liang Y, Lu C, Li C, Chang Y, Zou G, Hu G (2017) Performances of the hybrid between Cyca nucleocytplasmic hybrid fish and scattered mirror carp in different culture environments. Scientific Reports 7 (46329), 1-25.
Parameshwarappa SG, Salimath PM, Upadhyaya HD, Kajjidoni ST, Patil SS (2012) Heterosis in relation to genetic divergence in minicore collections of Chickpea (Cicer arietinum L.). Indian Journal of Genetics and Plant Breeding 72 (3), 303-308.
Proops L, Burden F, Osthaus B (2009) Mule cognition: a case of hybrid vigour? Anim Cogn. 12, 75-84.

Rahman RF, Ali MM, Salam MA, Ara J, Ahsan MK, Haque MT (2015) Heterosis and combining ability analysis among Indigenous and newly developed bivoltine silkworm, Bombyx mori L. Journal of Biological Sciences 15 (2), 92-97.
Rajalakshmi E, Chauhan TPS, Kamble CK (1998) Hybrid vigour among newly evolved bivoltine hybrids of silkworm Bombyx mori under hill conditions. Indian J. Agric. Sci. 68 (9), 620-624.
Sajgotra M, Bali RK, Sharma R (2017) Heterosis studies on thermotolerant hybrids of bivoltine silkworm Bombyx mori L. Journal of Pharmacognosy and Phytochemistry 6 (5), 921-928.
Samayoa LF, Malvar RA, Butrón A (2017) QTL for maize mid parent heterosis in the heterotic pattern american Dent \times European flint under corn borer pressure. Front Plant Sci. 8 (573), 1-8.
Sekhar L, Prakash BG, Salimath PM, Hiremath CP, Sridevi O, Patil AA (2010)
Implications of heterosis and combining ability among productive single

Table 9. Estimation of hybrid vigour over check parent value using the cardinal formulae.

Character Hybrid	CW (g)	$\begin{gathered} \text { CSW } \\ \text { (g) } \end{gathered}$	PW (g)	$\begin{aligned} & \text { CSR } \\ & (\%) \end{aligned}$	$\begin{gathered} \text { SP } \\ \text { (Cg/day) } \end{gathered}$	$\begin{aligned} & \text { Fd } \\ & \text { (day) } \end{aligned}$	$\begin{aligned} & \text { LD } \\ & \text { (day) } \end{aligned}$	$\begin{aligned} & \text { C/L } \\ & \text { (No) } \end{aligned}$	$\begin{aligned} & \text { PR } \\ & (\%) \end{aligned}$	$\begin{aligned} & \text { CP } \\ & \text { (\%) } \end{aligned}$	Mort (\%)	Crop/N (No)	Crop/W (g)
Eg	-27.418	-19.493	-31.308	11.441	-5.538	-14.773	-4.276	-20.476	21.083	-8.163	17.460	17.460	-13.436
Eg_{2}	-6.554	-0.080	-8.656	6.987	22.125	-18.182	-3.453	-24.762	-45.784	-4.082	16.293	16.293	8.646
Eg_{3}	-18.035	-14.979	-20.042	3.675	-3.465	-11.927	-3.453	-19.048	-65.663	0.000	13.044	13.044	-7.370
Eg4	28.879	19.603	33.215	-7.899	31.563	-9.091	-2.632	-10.000	3.011	-3.061	0.545	0.545	29.527
Eg	33.826	65.608	27.988	25.717	102.410	-18.182	-5.263	-4.286	-81.928	-5.102	27.335	27.335	70.359
Eg6	-3.082	6.530	-5.752	11.280	12.495	-5.964	-1.726	-1.905	-77.410	-1.531	-9.902	-9.902	-16.575
Eg7	26.978	31.536	27.643	3.615	54.335	-14.773	-4.276	-10.476	-85.542	0.000	-1.593	-1.593	24.942
Eg8	20.820	17.668	23.041	-2.26	49.159	-21.023	-6.086	-10.952	-77.226	-3.571	12.966	12.966	7.188
Eg	17.993	7.180	21.982	-8.667	13.637	-5.682	0.000	-10.952	-81.928	2.041	6.044	6.044	25.078
Eg10	30.055	45.696	28.093	12.125	70.950	-14.773	-4.276	-19.524	8.432	-3.061	-22.976	-22.976	0.151
Eg11	33.880	41.142	34.322	6.071	55.257	-9.091	-2.632	-17.143	-96.386	0.000	21.514	21.514	62.622
Eg12	-15.543	4.683	-21.775	25.140	37.495	-23.864	-6.908	15.238	-96.386	1.020	-9.344	-9.344	-23.441
Eg	28.468	19.163	32.783	-7.086	31.079	-9.091	-2.632	-2.857	-92.771	-4.082	23.437	23.437	58.559
Eg14	6.076	5.183	6.717	-0.356	38.150	-23.864	-6.908	2.857	-96.386	-2.041	-28.110	-28.110	-23.770
Eg15	5.106	5.093	5.457	0.616	23.309	-14.773	-4.276	-9.524	-90.964	-4.082	-9.994	-9.994	-5.378
Eg16	32.389	38.127	33.120	4.760	54.250	-5.682	0.987	-12.857	-96.386	0.000	16.421	16.421	54.073
Eg17	-17.425	-8.318	-20.940	11.707	7.573	-14.773	-4.276	-6.667	-81.928	1.020	14.630	14.630	-5.376
Eg18	13.385	4.753	16.503	-7.547	37.586	-23.864	-4.276	-9.048	-84.939	0.907	33.929	33.929	51.875
Eg19	4.743	10.156	3.680	4.348	16.792	-5.682	-1.645	-8.095	-90.964	-2.041	-18.469	-18.469	-14.625

Where: $\mathrm{CW}=$ fresh cocoon weight, $\mathrm{CSW}=$ fresh cocoon shell weight, $\mathrm{PW}=$ fresh pupal weight, $\mathrm{CSR}=$ cocoon shell ratio, $\mathrm{SP}=$ silk productivity, $\mathrm{FD}=$ fifth larvae duration, $\mathrm{Fd}=$ fifth larvae duration, $\mathrm{LD}=$ total larval duration, $\mathrm{C} / \mathrm{L}=$ number of cocoons per liter, $\mathrm{PR}=$ pupation ratio, $\mathrm{CP}=$ cocooning percentage, $\mathrm{Mort}=\mathrm{moratlity}$ percentage, Crop/ $\mathrm{N}=$ cocoon crop by number, $\mathrm{Crop} / \mathrm{W}=$ cocoon crop by weight.\& $\mathrm{Eg}_{1}=\mathrm{J}_{444} \mathrm{X} \mathrm{P}_{323}, \mathrm{Eg}_{2}=\mathrm{L}_{444} \mathrm{X} \mathrm{J}_{444}, \mathrm{Eg}_{3}=\mathrm{P}_{214} \mathrm{X} \mathrm{L}_{444}, \mathrm{Eg}_{4}=\mathrm{P}_{323} \mathrm{X} \mathrm{P}_{214}, \mathrm{Eg}_{5}=$

cross hybrids in tomato. Electronic Journal of Plant Breeding 1 (4), 706 -711.
Sharma K, Bali K (2019) Analysis of heterosis in some bivoltine silkworm hybrids of Bombyx mori L. Journal of Entomology and Zoology Studies 7 (5), 1-8.
Talebi E, Subramanya G (2009) Genetic distance and heterosis through evaluation index in the silkworm, Bombyx mori L. World Applied Sciences Journal 7(9), 1131-1137.
Talebi E, Subramanya G, Bakkappa S (2010) An investigation on heterosis and inbreeding depression in the silkworm, Bombyx mori L. ARPN Journal of Agricultural and Biological Science 5 (3), 52-55.
Tiwari A, Singh DK (2016) Study of heterosis and combining ability for earliness and vegetative traits in cucumber (Cucumis sativus L.). Journal of Applied and Natural Science 8 (2), 999-1005.

Tyagi V, Dhillon SK, Kaur G, Kaushik P (2020) Heterotic effect of different cytoplasmic combinations in sunflower hybrids cultivated under diverse irrigation regimes. Plants 9 (465), 1-16.
Van Hulten MHA, Paulo MJ, Kruijer W, Vries BDH, Kemperman B, Becker FFM, Yang J, Lauss K, Stam ME, Eeuwijk FAV, Keurentjes JJB (2018) Assessment of heterosis in two Arabidopsis thaliana common-reference mapping populations. Plos One 13(10), 1-25.
Vandana Y, Narendra PS, Anjali K, Rahul S, Aamrapali B, Sourabh S (2018) Effects of crossbreeding in livestock. The Pharma Innovat J. 7 (6), 672-676.

Wakchaure R, Ganguly S, Praveen PK, Sharma S, Kumar A, Mahajan T, Qadri K (2015) Importance of heterosis in animals: A Review. International Journal of Advanced Engineering Technology and Innovative Science 1(2), 1-5.

Table 10. Estimation of hybrid vigour over check parent value using the suggested modifications formulae.

Character Hybrid	CW (g)	$\begin{gathered} \text { CSW } \\ (\mathrm{g}) \end{gathered}$	$\begin{gathered} \text { PW } \\ \text { (g) } \end{gathered}$	CSR (\%)	$\begin{aligned} & \text { SP } \\ & \text { (Cg/ } \\ & \text { day) } \end{aligned}$	$\begin{aligned} & \text { Fd } \\ & \text { (day) } \end{aligned}$	$\begin{aligned} & \text { LD } \\ & \text { (day) } \end{aligned}$	$\begin{gathered} \text { C/L } \\ \text { (No) } \end{gathered}$	$\begin{aligned} & \text { PR } \\ & \text { (\%) } \end{aligned}$	$\begin{aligned} & \text { CP } \\ & \text { (\%) } \end{aligned}$	Mort (\%)	Crop/N (No)	Crop/W (g)	Positive character No.	$\begin{gathered} \text { RPV } \\ \% \end{gathered}$	Total hybrid vigour
Eg1	-27.418	-19.493	-31.308	11.441	-5.538	14.773	4.276	20.476	-21.083	-8.163	17.460	17.460	-13.436	6	46.154	-40.554
$E g_{2}$	-6.554	-0.080	-8.656	6.987	22.125	18.182	3.453	24.762	45.784	-4.082	16.293	16.293	8.646	9	69.231	143.151
$E g_{3}$	-18.035	-14.979	-20.042	3.675	-3.465	11.927	3.453	19.048	65.663	0.000	13.044	13.044	-7.370	8	61.538	65.961
E	28.879	19.603	33.215	-7.899	31.563	9.091	2.632	10.000	-3.011	-3.061	0.545	0.545	29.527	10	76.923	151.628
$E g_{5}$	33.826	65.608	27.988	25.717	102.410	18.182	5.263	4.286	81.928	-5.102	27.335	27.335	70.359	12	92.308	485.134
Eg6	-3.082	6.530	-5.752	11.280	12.495	5.964	1.726	1.905	77.410	-1.531	-9.902	-9.902	-16.575	7	53.846	70.565
Eg_{7}	26.978	31.536	27.643	3.615	54.335	14.773	4.276	10.476	85.542	0.000	-1.593	-1.593	24.942	11	84.615	280.932
Eg8	20.820	17.668	23.041	-2.261	49.159	21.023	6.086	10.952	77.226	-3.571	12.966	12.966	37.188	11	84.615	283.262
Eg9	17.993	7.180	21.982	-8.667	13.637	5.682	0.000	10.952	81.928	2.041	6.044	6.044	25.078	12	92.308	189.894
Eg10	30.055	45.696	28.093	12.125	70.950	14.773	4.276	19.524	-8.432	-3.061	-22.976	-22.976	0.151	9	69.231	168.198
Eg11	33.880	41.142	34.322	6.071	55.257	9.091	2.632	17.143	96.386	0.000	21.514	21.514	62.622	13	100.000	401.574
Eg12	-15.543	4.683	-21.775	25.140	37.495	23.864	6.908	-15.238	96.386	1.020	-9.344	-9.344	-23.441	7	53.846	100.809
Eg13	28.468	19.163	32.783	-7.086	31.079	9.091	2.632	2.857	92.771	-4.082	23.437	23.437	58.559	11	84.615	313.111
Eg14	6.076	5.183	6.717	-0.356	38.150	23.864	6.908	-2.857	96.386	-2.041	-28.110	-28.110	-23.770	7	53.846	98.038
Eg15	5.106	5.093	5.457	0.616	23.309	14.773	4.276	9.524	90.964	-4.082	-9.994	-9.994	-5.378	9	69.231	129.670
Eg16	32.389	38.127	33.120	4.760	54.250	5.682	-0.987	12.857	96.386	0.000	16.421	16.421	54.073	12	92.308	363.500
Eg17	-17.425	-8.318	-20.940	11.707	7.573	14.773	4.276	6.667	81.928	1.020	14.630	14.630	-5.376	9	69.231	105.144
Eg18	13.385	4.753	16.503	-7.547	37.586	23.864	4.276	9.048	84.939	0.907	33.929	33.929	51.875	12	92.308	307.447
Eg19	4.743	10.156	3.680	4.348	16.792	5.682	1.645	8.095	90.964	-2.041	-18.469	-18.469	-14.625	9	69.231	92.502

Where: $\mathrm{CW}=$ fresh cocoon weight, $\mathrm{CSW}=$ fresh cocoon shell weight, $\mathrm{PW}=$ fresh pupal weight, $\mathrm{CSR}=$ cocoon shell ratio, $\mathrm{SP}=$ silk productivity, $\mathrm{FD}=$ fifth larvae duration, $\mathrm{Fd}=$ fifth larvae duration, $\mathrm{LD}=$ total larval duration, $\mathrm{C} / \mathrm{L}=$ number of cocoons per liter, $\mathrm{PR}=$ pupation ratio, $\mathrm{CP}=$ cocooning percentage, $\mathrm{Mort}=$ moratlity percentage, Crop/ $\mathrm{N}=$ cocoon crop by number, $\mathrm{Crop} / \mathrm{W}=$ cocoon crop by weight $; R P V=$ ratio positive value, \& $\mathrm{Eg}_{1=} \mathrm{J}_{444} \mathrm{X} \mathrm{P}_{323}, \mathrm{Eg}_{2}=\mathrm{L}_{444} \mathrm{X} \mathrm{J}_{444}, \mathrm{Eg}_{3}=\mathrm{P}_{214} \mathrm{X} \mathrm{L}_{444}$,

Table 11. Arrangements of selected hybrids of total hybrid vigour over check parent values and ratio of positive value.

Character Hybrids	RPV $\%$	Total of hybrid vigour	Serial No.
Eg $_{5}$	92.308	485.134	1
Eg $_{11}$	100.000	401.574	2
Eg $_{16}$	92.308	363.500	3
Eg $_{13}$	84.615	313.111	4
Eg $_{18}$	92.308	307.447	5
Eg $_{8}$	84.615	283.262	6
Eg $_{7}$	84.615	280.932	7
Eg $_{9}$	92.308	189.894	8
Eg $_{10}$	69.231	168.198	9
Eg $_{4}$	76.923	151.628	10
Eg $_{2}$	69.231	143.151	11
Eg $_{15}$	69.231	129.670	12
Eg $_{17}$	69.231	105.144	13
Eg $_{12}$	53.846	100.809	14
Eg $_{14}$	53.846	98.038	15
Eg $_{19}$	69.231	92.502	16
Eg $_{6}$	53.846	70.565	17
Eg $_{3}$	61.538	65.961	18
		17	

Where: $\mathrm{RPV}=$ ratio positive value, $\mathrm{Eg}_{2}=\mathrm{L}_{444} \mathrm{X} \mathrm{J}_{444}, \mathrm{Eg}_{3}=\mathrm{P}_{214} \mathrm{X}$ L444, $\mathrm{Eg}_{4}=$ $\mathrm{P}_{323} \mathrm{X} \mathrm{P}_{214}, \mathrm{Eg}_{5}=\mathrm{RBmch} \mathrm{X}_{345}, \mathrm{Eg}_{6}=\mathrm{Z}_{345} \mathrm{X}$ RBmch${ }_{1}, \mathrm{Eg}_{7}=\mathrm{L}_{252} \quad \mathrm{X} \mathrm{Z} \mathrm{Z}_{345}$, $\mathrm{Eg}_{8}=\mathrm{Z}_{345} \mathrm{X} \mathrm{L}_{252}, \mathrm{Eg}_{9}=\mathrm{RBmj}_{1} \mathrm{X} \mathrm{Z}_{345}, \mathrm{Eg}_{10}=\mathrm{Z}_{345} \mathrm{X}$ RBmj${ }_{1}, \mathrm{Eg}_{11}=\mathrm{I}_{2} \mathrm{pch} \mathrm{X}$
 $C_{2} p j X_{2} p c h, \mathrm{Eg}_{16}=\mathrm{RBpj}_{1}$ X I $_{2} \mathrm{pch}, \mathrm{Eg}_{17}=\mathrm{I}_{2} \mathrm{pj} X \mathrm{M}_{245}, \mathrm{Eg}_{18}=\mathrm{Z}_{345} X \mathrm{I}_{2} \mathrm{pj}$, $\mathrm{Eg}_{19}=\mathrm{I}_{2} \mathrm{pj}$ X RBpch ${ }_{3}$.

[^0]: Where: $\mathrm{CW}=$ fresh cocoon weight, $\mathrm{CSW}=$ fresh cocoon shell weight, $\mathrm{PW}=$ fresh pupal weight, $\mathrm{CSR}=$ cocoon shell ratio, $\mathrm{SP}=$ silk productivity, $\mathrm{FD}=$ fifth larvae duration, $\mathrm{Fd}=$ fifth larvae duration, $\mathrm{LD}=$ total larval duration, $\mathrm{C} / \mathrm{L}=$ number of cocoons per liter, $\mathrm{PR}=$ pupation ratio, $\mathrm{CP}=$ cocooning percentage, $\mathrm{Mort}=\mathrm{moratlity}$ percentage, Crop/ $N=$ cocoon crop by number, $\mathrm{Crop} / \mathrm{W}=$ cocoon crop by weight.\& Eg $g_{1=} \mathrm{J}_{444} \mathrm{X} \mathrm{P}_{323}, \mathrm{Eg}_{2}=\mathrm{L}_{444} \mathrm{X} \mathrm{J}_{444}, \mathrm{Eg}_{3}=\mathrm{P}_{214} \mathrm{X} \mathrm{L}_{444}, \mathrm{Eg}_{4}=\mathrm{P}_{323} \mathrm{X} \mathrm{P} \mathrm{P}_{214}, \mathrm{Eg}_{5}=$

