Acknowledgement
The authors deeply thank the referees for a careful reading and numerous helpful suggestions to improve this paper.
References
- P. S. Bourdon and S. K. Narayan, Normal weighted composition operators on the Hardy space H2(𝕌), J. Math. Anal. Appl. 367 (2010), no. 1, 278-286. https://doi.org/10.1016/j.jmaa.2010.01.006
- P. S. Bourdon and S. Waleed Noor, Complex symmetry of invertible composition operators, J. Math. Anal. Appl. 429 (2015), no. 1, 105-110. https://doi.org/10.1016/j.jmaa.2015.04.008
- C. C. Cowen, Composition operators on H2, J. Operator Theory 9 (1983), no. 1, 77-106.
- C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995.
- Y.-X. Gao and Z.-H. Zhou, Complex symmetric composition operators induced by linear fractional maps, Indiana Univ. Math. J. 69 (2020), no. 2, 367-384. https://doi.org/10.1512/iumj.2020.69.7622
- S. R. Garcia, The eigenstructure of complex symmetric operators, in Recent advances in matrix and operator theory, 169-183, Oper. Theory Adv. Appl., 179, Birkhauser, Basel, 2008. https://doi.org/10.1007/978-3-7643-8539-2_10
- S. R. Garcia and M. Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358 (2006), no. 3, 1285-1315. https://doi.org/10.1090/S0002-9947-05-03742-6
- S. R. Garcia and M. Putinar, Complex symmetric operators and applications. II, Trans. Amer. Math. Soc. 359 (2007), no. 8, 3913-3931. https://doi.org/10.1090/S0002-9947-07-04213-4
- S. R. Garcia and W. R. Wogen, Some new classes of complex symmetric operators, Trans. Amer. Math. Soc. 362 (2010), no. 11, 6065-6077. https://doi.org/10.1090/S0002-9947-2010-05068-8
- X. Hu, Z. Yang, and Z. Zhou, Complex symmetric weighted composition operators on Dirichlet spaces and Hardy spaces in the unit ball, Internat. J. Math. 31 (2020), no. 1, 2050006, 21 pp. https://doi.org/10.1142/S0129167X20500068
- C. Jiang, X. Dong, and Z. Zhou, Complex symmetric Toeplitz operators on the unit polydisk and the unit ball, Acta Math. Sci. Ser. B (Engl. Ed.) 40 (2020), no. 1, 35-44. https://doi.org/10.1007/s10473-020-0103-2
- C. Jiang, S.-A. Han, and Z. Zhou, Complex symmetric weighted composition operators on the Hardy space, Czechoslovak Math. J. 70(145) (2020), no. 3, 817-831. https://doi.org/10.21136/CMJ.2020.0555-18
- S. Jung, Y. Kim, E. Ko, and J. E. Lee, Complex symmetric weighted composition operators on H2(𝔻), J. Funct. Anal. 267 (2014), no. 2, 323-351. https://doi.org/10.1016/j.jfa.2014.04.004
- T. Le, Self-adjoint, unitary, and normal weighted composition operators in several variables, J. Math. Anal. Appl. 395 (2012), no. 2, 596-607. https://doi.org/10.1016/j.jmaa.2012.05.065
- R. Lim and L. H. Khoi, Complex symmetric weighted composition operators on 𝓗γ(𝔻), J. Math. Anal. Appl. 464 (2018), no. 1, 101-118. https://doi.org/10.1016/j.jmaa.2018.03.071
- S. K. Narayan, D. Sievewright, and D. Thompson, Complex symmetric composition operators on H2, J. Math. Anal. Appl. 443 (2016), no. 1, 625-630. https://doi.org/10.1016/j.jmaa.2016.05.046
- S. Waleed Noor, Complex symmetry of composition operators induced by involutive ball automorphisms, Proc. Amer. Math. Soc. 142 (2014), no. 9, 3103-3107. https://doi.org/10.1090/S0002-9939-2014-12029-6
- S. Waleed Noor, On an example of a complex symmetric composition operator on H2(𝔻), J. Funct. Anal. 269 (2015), no. 6, 1899-1901. https://doi.org/10.1016/j.jfa.2015.06.019
- X. Wang and Z. Gao, A note on Aluthge transforms of complex symmetric operators and applications, Integral Equations Operator Theory 65 (2009), no. 4, 573-580. https://doi.org/10.1007/s00020-009-1719-5