DOI QR코드

DOI QR Code

NORMAL COMPLEX SYMMETRIC WEIGHTED COMPOSITION OPERATORS ON THE HARDY SPACE

  • Zhou, Hang (School of Science Department of Mathematics Tianjin Chengjian University) ;
  • Zhou, Ze-Hua (School of Mathematics Tianjin University)
  • Received : 2019.10.31
  • Accepted : 2021.05.06
  • Published : 2021.07.01

Abstract

In this paper, we investigate the normal and complex symmetric weighted composition operators W𝜓,𝜑 on the Hardy space H2(𝔻). Firstly, we give the explicit conditions of weighted composition operators to be normal and complex symmetric with respect to conjugations 𝒞1 and 𝒞2 on H2(𝔻), respectively. Moreover, we particularly investigate the weighted composition operators W𝜓,𝜑 on H2(𝔻) which are normal and complex symmetric with respect to conjugations 𝓙, 𝒞1 and 𝒞2, respectively, when 𝜑 has an interior fixed point, 𝜑 is of hyperbolic type or parabolic type.

Keywords

Acknowledgement

The authors deeply thank the referees for a careful reading and numerous helpful suggestions to improve this paper.

References

  1. P. S. Bourdon and S. K. Narayan, Normal weighted composition operators on the Hardy space H2(𝕌), J. Math. Anal. Appl. 367 (2010), no. 1, 278-286. https://doi.org/10.1016/j.jmaa.2010.01.006
  2. P. S. Bourdon and S. Waleed Noor, Complex symmetry of invertible composition operators, J. Math. Anal. Appl. 429 (2015), no. 1, 105-110. https://doi.org/10.1016/j.jmaa.2015.04.008
  3. C. C. Cowen, Composition operators on H2, J. Operator Theory 9 (1983), no. 1, 77-106.
  4. C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995.
  5. Y.-X. Gao and Z.-H. Zhou, Complex symmetric composition operators induced by linear fractional maps, Indiana Univ. Math. J. 69 (2020), no. 2, 367-384. https://doi.org/10.1512/iumj.2020.69.7622
  6. S. R. Garcia, The eigenstructure of complex symmetric operators, in Recent advances in matrix and operator theory, 169-183, Oper. Theory Adv. Appl., 179, Birkhauser, Basel, 2008. https://doi.org/10.1007/978-3-7643-8539-2_10
  7. S. R. Garcia and M. Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358 (2006), no. 3, 1285-1315. https://doi.org/10.1090/S0002-9947-05-03742-6
  8. S. R. Garcia and M. Putinar, Complex symmetric operators and applications. II, Trans. Amer. Math. Soc. 359 (2007), no. 8, 3913-3931. https://doi.org/10.1090/S0002-9947-07-04213-4
  9. S. R. Garcia and W. R. Wogen, Some new classes of complex symmetric operators, Trans. Amer. Math. Soc. 362 (2010), no. 11, 6065-6077. https://doi.org/10.1090/S0002-9947-2010-05068-8
  10. X. Hu, Z. Yang, and Z. Zhou, Complex symmetric weighted composition operators on Dirichlet spaces and Hardy spaces in the unit ball, Internat. J. Math. 31 (2020), no. 1, 2050006, 21 pp. https://doi.org/10.1142/S0129167X20500068
  11. C. Jiang, X. Dong, and Z. Zhou, Complex symmetric Toeplitz operators on the unit polydisk and the unit ball, Acta Math. Sci. Ser. B (Engl. Ed.) 40 (2020), no. 1, 35-44. https://doi.org/10.1007/s10473-020-0103-2
  12. C. Jiang, S.-A. Han, and Z. Zhou, Complex symmetric weighted composition operators on the Hardy space, Czechoslovak Math. J. 70(145) (2020), no. 3, 817-831. https://doi.org/10.21136/CMJ.2020.0555-18
  13. S. Jung, Y. Kim, E. Ko, and J. E. Lee, Complex symmetric weighted composition operators on H2(𝔻), J. Funct. Anal. 267 (2014), no. 2, 323-351. https://doi.org/10.1016/j.jfa.2014.04.004
  14. T. Le, Self-adjoint, unitary, and normal weighted composition operators in several variables, J. Math. Anal. Appl. 395 (2012), no. 2, 596-607. https://doi.org/10.1016/j.jmaa.2012.05.065
  15. R. Lim and L. H. Khoi, Complex symmetric weighted composition operators on 𝓗γ(𝔻), J. Math. Anal. Appl. 464 (2018), no. 1, 101-118. https://doi.org/10.1016/j.jmaa.2018.03.071
  16. S. K. Narayan, D. Sievewright, and D. Thompson, Complex symmetric composition operators on H2, J. Math. Anal. Appl. 443 (2016), no. 1, 625-630. https://doi.org/10.1016/j.jmaa.2016.05.046
  17. S. Waleed Noor, Complex symmetry of composition operators induced by involutive ball automorphisms, Proc. Amer. Math. Soc. 142 (2014), no. 9, 3103-3107. https://doi.org/10.1090/S0002-9939-2014-12029-6
  18. S. Waleed Noor, On an example of a complex symmetric composition operator on H2(𝔻), J. Funct. Anal. 269 (2015), no. 6, 1899-1901. https://doi.org/10.1016/j.jfa.2015.06.019
  19. X. Wang and Z. Gao, A note on Aluthge transforms of complex symmetric operators and applications, Integral Equations Operator Theory 65 (2009), no. 4, 573-580. https://doi.org/10.1007/s00020-009-1719-5