DOI QR코드

DOI QR Code

Optimization of submerged culture conditions for roridin E production from the poisonous mushroom Podostroma cornu-damae

  • Lee, Dong Hwan (Division of Environmental Forest Science and Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Ha, Si Young (Division of Environmental Forest Science and Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Jung, Ji Young (Division of Environmental Forest Science and Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Yang, Jae-Kyung (Division of Environmental Forest Science and Institute of Agriculture & Life Science, Gyeongsang National University)
  • Received : 2021.05.20
  • Accepted : 2021.06.24
  • Published : 2021.06.30

Abstract

Roridin E, produced by Podostroma cornu-damae, is a mycotoxin with anticancer activity. To increase the content of roridin E, submerged culture conditions were optimized using response surface methodology. Three factors, namely, medium initial pH, incubation time and agitation speed were optimized using a Box-Behnken design. The optimum submerged culture conditions to increase the content of roridin E included a medium with an initial pH of 4.0, an incubation time of 12.90 days, and an agitation speed of 63.03 rpm. The roridin E content in the submerged culture, under the aforementioned conditions, was 40.26 mg/L. The findings of this study can help lower the current price of roridin E and promote its related research.

Keywords

Acknowledgement

This study was carried out with the support of R&D Program for Forest Science Technology (Project No. "2020253A00-2021-0001") provided by Korea Forest Service (Korea Forestry Promotion Institute).

References

  1. Adnan M, Ashraf SA, Khan S, Alshammari E, Awadelkareem AM. 2017. Effect of pH, temperature and incubation time on cordycepin production from Cordyceps militaris using solid-state fermentation on various substrates. CyTA-Journal of food 15: 617-621. https://doi.org/10.1080/19476337.2017.1325406
  2. Asadi F, Barshan-Tashnizi M, Hatamian-Zarmi A, Davoodi-Dehaghani F, Ebrahimi-Hosseinzadeh B. 2021. Enhancement of exopolysaccharide production from Ganoderma lucidum using a novel submerged volatile co-culture system. Fungal Biology 125: 25-31. https://doi.org/10.1016/j.funbio.2020.09.010
  3. Bean GA, Fernando T, Jarvis BB, Bruton B. 1984. The isolation and identification of trichothecene metabolites from a plant pathogenic strain of Myrothecium roridum. Journal of natural products 47: 727-729. https://doi.org/10.1021/np50034a031
  4. Cui JD, Yuan LQ. 2011. Optimization of culture conditions on mycelial grown in submerged culture of Cordyceps militaris. International Journal of Food Engineering 7.
  5. Ferreira SC, Bruns RE, Ferreira HS, Matos GD, David JM, Brandao GC, Da Silva EGP, Portugal LA, Dos Reis PS, Souza AS, Dos Santos WNL. 2007. Box-Behnken design: an alternative for the optimization of analytical methods. Analytica chimica acta 597: 179-186. https://doi.org/10.1016/j.aca.2007.07.011
  6. Gonmori K, Fujita H, Yokoyama K, Watanabe K, Suzuki O. 2011. Mushroom toxins: a forensic toxicological review. Forensic Toxicology 29: 85-94. https://doi.org/10.1007/s11419-011-0115-4
  7. Jackson AM, Whipps JM, Lynch JM. 1991. Nutritional studies of four fungi with disease biocontrol potential. Enzyme and microbial technology 13: 456-461. https://doi.org/10.1016/0141-0229(91)90002-R
  8. Jarvis BB, Wang S. 1999. Stereochemistry of the roridins. Diastereomers of roridin E. Journal of natural products 62: 1284-1289. https://doi.org/10.1021/np990272j
  9. Jo WS, Hossain MA, Park SC. 2014. Toxicological profiles of poisonous, edible, and medicinal mushrooms. Mycobiology 42: 215-220. https://doi.org/10.5941/MYCO.2014.42.3.215
  10. Lee SR, Seok S, Ryoo R, Choi SU, Kim KH. 2018. Macrocyclic trichothecene mycotoxins from a deadly poisonous mushroom, Podostroma cornu-damae. Journal of natural products 82: 122-128. https://doi.org/10.1021/acs.jnatprod.8b00823
  11. Meng F, Xing G, Li Y, Song J, Wang Y, Meng Q, Lu J, Zhou Y, Wang D, Teng L. 2016. The optimization of Marasmius androsaceus submerged fermentation conditions in five-liter fermentor. Saudi journal of biological sciences 23: S99-S105. https://doi.org/10.1016/j.sjbs.2015.06.022
  12. Miles PG, Chang ST. 2004. Mushrooms: cultivation, nutritional value, medicinal effect, and environmental impact. CRC press. USA. 5.
  13. Muthukumar M, Mohan D, Rajendran M. 2003. Optimization of mix proportions of mineral aggregates using Box Behnken design of experiments. Cement and Concrete Composites 25:751-758. https://doi.org/10.1016/S0958-9465(02)00116-6
  14. Osinska-Jaroszuk M, Jarosz-Wilkolazka A, Jaroszuk-Scisel J, Szalapata K, Nowak A, Jaszek M, Ozimek E, Majewska M. 2015. Extracellular polysaccharides from Ascomycota and Basidiomycota: production conditions, biochemical characteristics, and biological properties. World Journal of Microbiology and Biotechnology 31:1823-1844. https://doi.org/10.1007/s11274-015-1937-8
  15. Park JS, Min JH, Kim H, Lee SW, Kang JH, An JY. 2016. Four cases of successful treatment after Podostroma cornu-damae intoxication. Hong Kong journal of emergency medicine 23:55-59. https://doi.org/10.1177/102490791602300107
  16. Rocha O, Ansari K, Doohan FM. 2005. Effects of trichothecene mycotoxins on eukaryotic cells: a review. Food additives and contaminants 22: 369-378. https://doi.org/10.1080/02652030500058403
  17. Saikawa Y, Okamoto H, Inui T, Makabe M, Okuno T, Suda T, Hashimoto K, Nakata M. 2001. Toxic principles of a poisonous mushroom Podostroma cornu-damae. Tetrahedron 57: 8277-8281. https://doi.org/10.1016/S0040-4020(01)00824-9
  18. Sharma D, Singh VP, Singh NK. 2018. A review on phytochemistry and pharmacology of medicinal as well as poisonous mushrooms. Mini Reviews in Medicinal Chemistry 18: 1095-1109. https://doi.org/10.2174/1389557517666170927144119
  19. Si J, Meng G, Wu Y, Ma HF, Cui BK, Dai YC. 2019. Medium composition optimization, structural characterization, and antioxidant activity of exopolysaccharides from the medicinal mushroom Ganoderma lingzhi. International Journal of Biological Macromolecules 124: 1186-1196. https://doi.org/10.1016/j.ijbiomac.2018.11.274
  20. Stamets P. 1993. Growing gourmet and medicinal mushrooms. Ten Speed Press. USA. 146.
  21. Wu L, Qiu L, Zhang H, Sun J, Hu X, Wang B. 2017. Optimization for the Production of Deoxynivalenol and Zearalenone by Fusarium graminearum Using Response Surface Methodology. Toxins 9: 57. https://doi.org/10.3390/toxins9020057
  22. Wasser SP. 2010. Medicinal mushroom science: history, current status, future trends, and unsolved problems. International Journal of Medicinal Mushrooms 12.
  23. Yang JN, Kang JH, Kang YS, Seok SJ, Kim WK. 2013. A case of Podostroma cornu-damae intoxication similar to drug hypersensitivity syndrome. Korean Journal of Medicine 85:223-228. https://doi.org/10.3904/kjm.2013.85.2.223
  24. Yu HM, Kim J, Kang S, An S, Lim CH, Lee HG, Lee KR. 2013. Mushroom poisoning by Podostroma cornu-damae: a case report and review of the literature. Journal of the Korean Society of Emergency Medicine 24: 469-472.
  25. Zhang H, Qiu S, Tamez P, Tan GT, Aydogmus Z, Hung NV, Choung NM, Angerhofer C, Soejarto DD, Pezzuto JM, Fong HH. 2002. Antimalarial agents from plants II. Decursivine, a new antimalarial indole alkaloid from Rhaphidophora decursiva. Pharmaceutical Biology 40: 221-224. https://doi.org/10.1076/phbi.40.3.221.5832
  26. Zhu M, Cen Y, Ye W, Li S, Zhang W. 2020. Recent Advances on Macrocyclic Trichothecenes, Their Bioactivities and Biosynthetic Pathway. Toxins 12: 417. https://doi.org/10.3390/toxins12060417