DOI QR코드

DOI QR Code

Artificial Intelligence based Threat Assessment Study of Uncertain Ground Targets

불확실 지상 표적의 인공지능 기반 위협도 평가 연구

  • Jin, Seung-Hyeon (Korea Research Institute for Defense Technology Planning and Advancement)
  • Received : 2021.04.28
  • Accepted : 2021.06.04
  • Published : 2021.06.30

Abstract

The upcoming warfare will be network-centric warfare with the acquiring and sharing of information on the battlefield through the connection of the entire weapon system. Therefore, the amount of information generated increases, but the technology of evaluating the information is insufficient. Threat assessment is a technology that supports a quick decision, but the information has many uncertainties and is difficult to apply to an advanced battlefield. This paper proposes a threat assessment based on artificial intelligence while removing the target uncertainty. The artificial intelligence system used was a fuzzy inference system and a multi-layer perceptron. The target was classified by inputting the unique characteristics of the target into the fuzzy inference system, and the classified target information was input into the multi-layer perceptron to calculate the appropriate threat value. The validity of the proposed technique was verified with the threat value calculated by inputting the uncertain target to the trained artificial neural network.

미래전의 양상은 네트워크 중심전으로 전체계의 연결을 통한 전장상황 정보획득 및 공유가 주를 이룰 것이다. 따라서 전장에서 생성되는 정보의 양은 많아지지만, 정보를 평가하여 전장을 효율적으로 지휘하는 기술은 부족한 것이 현실태이다. 이를 극복하기 위해 대두되는 기술이 전장 위협평가이다. 전장 위협평가는 획득된 정보를 사용하여 지휘관의 신속 결심을 지원하는 기술이지만 획득된 정보에는 표적의 불확실성이 많고 점차 지능화되는 전장상황에 적용하기에 현재 기술수준이 낮은 부분이 있다. 본 논문에서는 표적의 불확실성을 제거하고 고도화되는 전장상황에서도 적용 가능한 인공지능 기반의 전장 위협평가 기법에 대해 제안한다. 사용된 인공지능 시스템으로는 퍼지 추론 시스템과 다층 퍼셉트론을 사용하였다. 퍼지 추론 시스템에 표적의 고유특성을 입력시켜 표적을 분류해내었고 분류된 표적정보를 다른 표적 변수들과 함께 다층 퍼셉트론에 입력하여 해당 표적에 맞는 위협도 값을 산출하였다. 그 결과, 시뮬레이션을 통해 두 가지 시나리오상에서 무작위로 설정된 불확실 표적들을 인공신경망에 훈련시켰고, 훈련된 인공신경망에 시험용 표적을 입력하여 산출되는 위협도 값으로 제안한 기술의 타당성을 검증하였다.

Keywords

References

  1. K. E. Lee, S. S. Choi, "A Study on the Principles of Military Operations Coincident with Modern War", The Journal of Military Studies, no.7, pp.129-154, 2009.
  2. M. H. Ahn, J. K. Ji, H. H. Cho, C. S. Sin, Y. W. Park. T. S. Lee, T. Y. Kim, "Tactical Fire Direction Automation for Command and Control of Artillery Battalion Unit", The Journal of Korean Institute of Communications and Information Sciences, Vol.35, No.11, pp.1738-1747, Oct. 2010.
  3. S. Kim, K. H. Kim, S. Y. Kim, "A Concept Study on Efficient Domestic Development of 120mm Self-propelled Mortar System", Journal of the Korea Institute of Military Science and Technology(KIMST), Vol.12, No.2, pp.133-138, Apr. 2009.
  4. M. H. Yoon, J. H. Park, "A Threat Assessment Algorithm for Multiple Ground Targets", The Journal of the Korea Contents Association, Vol.18, No.7, pp.590-599, Jul. 2018. DOI : https://doi.org/10.5392/JKCA.2018.18.07.590
  5. J. M. Ahn, K. H. Jung, "A Study on Threat Evaluation Method Considering Engagement Capability Time", 2019 KIMST Annual Conference Proceedings, KIMST, Jeju. Korea, pp.1342-1343, Jun. 2019.
  6. J. M. Yun, B. M. Choi, M. M. Han, S. H. Kim, "Air Threat Evaluation System using Fuzzy-Bayesian Network based on Information Fusion", Journal of Korean Socieity for Internett Information, Vol.13, No.5, pp.21-31, Oct. 2012. DOI : https://doi.org/10.7472/jksii.2012.13.5.21
  7. J. M. Yun, S. S. Hong, M. M. Han, "The Study of Threat Evaluation using Fuzzy-Bayesian Network that is Applicable to Various Battlefield Situation", Proceedings of KIIS Spring Conference 2012, Journal of Korean Institute of Intelligent Systems, Korea, Vol.22, No.1, pp.228-229, Apr. 2012.
  8. H. Y. Lee, J. H. Kim, S. Y. Kim, B. J. Choi, S. H. Moon, K. H. Park, "Design of a SIFT based Target Classification Algorithm robust to Geometric Transformation of Target", Journal of Korean Institute of Intelligent Systems, Vol.20, No.1, pp. 116-122, Jan. 2010. DOI : https://doi.org/10.5391/JKIIS.2010.20.1.116
  9. Thermo Analytics, "EO/IR Physics-Based Image Sets", Thermo Analytics, 2021, Available from : https://thermoanalytics.com/eo-ir-image-sets (accessed Apr. 19. 2021)
  10. S. H. Kim, W. J. Song, S. H. Kim, "Double Weight-Based SAR and Infrared Sensor Fusion for Automatic Ground Target Recognition with Deep Learning", Remote Sensing, Vol. 10, No. 1, Jan. 2018. DOI : https://doi.org/10.3390/rs10010072
  11. N. H. Jeong, S. H. Lee, M. S. Kang, C. W. Gu, C. H. Kim, K. T. Kim, "Target Prioritization for Multi-Function Radar Using Artificial Neural Network Based on Steepest Descent Method", The Journal of Korean Institute of Electromagnetic Engineering and Science(JIEES), Vol.29, No.1, pp.68-76, Jan. 2018. DOI : https://doi.org/10.5515/KJKIEES.2018.29.1.68
  12. He, Kaiming, et al. "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification.", Proceedings of the IEEE international conference on computer vision, pp. 1026-1034, Feb. 2015. DOI : https://doi.org/10.1109/ICCV.2015.123