DOI QR코드

DOI QR Code

A methodology for Identification of an Air Cavity Underground Using its Natural Poles

물체의 고유 Pole을 이용한 지하 속의 빈 공간 식별 방안

  • Lee, Woojin (Korea Research Institute for defense Technology planning and advancement)
  • Received : 2021.04.05
  • Accepted : 2021.06.04
  • Published : 2021.06.30

Abstract

A methodology for the identification and coordinates estimation of air cavities under urban ground or sandy soil using its natural poles and natural resonant frequencies is presented. The potential of this methodology was analyzed. Simulation models of PEC (Perfect Electric Conductor)s with various shapes and dimensions were developed using an EM (Electromagnetic) simulator. The Cauchy method was applied to the obtained EM scattering response of various objects from EM simulation models. The natural poles of objects corresponding to its instinct characterization were then extracted. Thus, a library of poles can be generated using their natural poles. The generated library of poles provided the possibility of identifying a target by comparing them with the computed natural poles from a target. The simulation models were made assuming that there is an air cavity under urban ground or sandy soil. The response of the desired target was extracted from the electromagnetic wave scattering data from its simulation model. The coordinates of the target were estimated using the time delay of the impulse response (peak of the impulse response) in the time domain. The MP (Matrix Pencil) method was applied to extract the natural poles of a target. Finally, a 0.2-m-diameter spherical air cavity underground could be estimated by comparing both the pole library of the objects and the calculated natural poles and the natural resonant frequency of the target. The computed location (depth) of a target showed an accuracy of approximately 84 to 93%.

본 논문에서는 도시환경과 모래가 많은 토양 아래에 구 형태의 빈 공간이 있을 경우를 가정하고, 해당 목표물의 고유 pole과 고유 공진주파수를 활용하여 목표물을 식별 및 위치를 추정하는 방안을 제시하였으며 가능성을 분석하였다. EM(Electromagnetic) 시뮬레이터를 활용하여 다양한 형태와 크기를 가진 완전도체(PEC: Perfect Electric Conductor)들을 모델링하였고, 이를 통해 획득한 EM 산란응답에 Cauchy 방법을 적용하여 물체의 고유 특성에 해당하는 고유 pole을 축적하여 pole 라이브러리를 생성하였다. 생성된 pole 라이브러리는 목표물에서 추출한 고유 pole과의 비교를 통해 목표물을 식별할 수 있는 가능성을 제공해 준다. 도시환경과 모래가 많은 토양 아래에 구 형태의 빈 공간이 있음을 가정하고 EM 시뮬레이션 모델링을 통해 얻은 전자파 산란 데이터로부터 관심 목표물의 응답을 추출하였으며, 시간영역에서 임펄스 응답의 시간 지연을 이용하여 목표물의 위치를 추정할 수 있었다. 또한 MP(Matrix Pencil) 방법을 적용하여 목표물의 고유 pole을 추출하였다. 최종적으로 계산된 고유 pole과 고유 공진주파수를 pole 라이브러리와 비교하여 탐지된 목표물을 구 형태의 빈 공간(직경 0.2m)으로 추정할 수 있었으며, 계산된 목표물의 위치(깊이)는 약 84 ~ 93%의 정확도를 보였다.

Keywords

References

  1. M. Farfour, O. Abdellah, F. Al-Shukaili, "Geophysical investigation of underground cavity in Bimah Sinkhole, Northen Oman", Fifth International Conference on Engineering Geophysics, SEG, Al Ain, UAE, pp.203-206, Oct. 2019. DOI: https://doi.org/10.1190/iceg2019-052.1
  2. C. E. Baum, On the Singularity Expansion Method for the Solution of Electromagnetic Interaction problems, Interaction Notes, Air Force Weapons Laboratory, USA, pp.71-109. Available From: http://ece-research.unm.edu/summa/notes/In/0088.pdf
  3. J. Yang, T. K. Sarkar, "Interpolation/Extrapolation of Radar Cross-Section (RCS) Data in the Frequency Domain Using the Cauchy Method", IEEE Transactions on Antennas and Propagation, Vol.55, No.10, pp.2844-2851, Oct. 2007. DOI: http://dx.doi.org/10.1109/TAP.2007.904063
  4. R. S. Adve, T. K. Sarkar, O. M. C. Pereira-Filho, S. M. Rao, "Extrapolation of time-domain responses from three-dimensional conducting objects utilizing the matrix pencil technique", IEEE Transactions on Antennas and Propagation, Vol.45, No.1, pp.147-156, Jan. 1997. DOI: http://dx.doi.org/10.1109/8.554252
  5. W. Lee, T. K. Sarkar, H. Moon, M. Salazar-Palma, "Identification of Multiple Objects Using Their Natural Resonant Frequencies", IEEE Antennas and Wireless Propagation Letters, Vol.12, pp.54-57, Jan. 2013. DOI: http://dx.doi.org/10.1109/LAWP.2013.2237746
  6. A. V. Oppenheim, R. W. Schafer, J. R. Buck, Discrete-time Signal Processing Second Edition, p.870, Prentice Hall, 1999, pp.22-34.
  7. Y. Zhang, T. K. Sarkar, X. Zhao, D. Garcia-Donoro, W. Zhao, M. Salazar-Palma, S. Ting, Higher Order Basis Based Integral Equation Solver (HOBBIES), p.568, Wiley, 2012, pp.1-442.
  8. J. D. Kraus, Antennas Second Edition Appendix A, p.892, McGraw-Hill, 1988, p.851.
  9. D. Ghosh, UWB Antenna Design for Signature Extraction of Buried Targets, Ph.D. dissertation, Department of Electrical Engineering and Computer Science, Syracuse University, NY, USA, pp.107-161, 2008.