DOI QR코드

DOI QR Code

Preparation of Recombinant Human Epidermal Growth Factor by Hydroxylamine Cleavage

하이드록실아민 절단을 이용한 재조합 인간 상피세포 성장인자의 제조

  • Kim, Sun-Ho (Department of Biomedical Materials, Konyang University) ;
  • Lee, Woo-Yiel (Department of Biomedical Materials, Konyang University)
  • 김선호 (건양대학교 의료신소재학과) ;
  • 이우일 (건양대학교 의료신소재학과)
  • Received : 2021.05.03
  • Accepted : 2021.06.04
  • Published : 2021.06.30

Abstract

The purpose of this study was to provide an economical and easy preparation method for recombinant human epidermal growth factor (rhEGF) without the need for an expensive enzyme to cleave the fusion part. However, the N-terminal fusion part is still useful for affinity chromatography. The hEGF is an important hormone in cell growth and proliferation in humans, and many studies on the expression and purification of this protein have been reported. In the present study, the hEGF gene was designed to be optimized with the E. coli codon usage preference and to contain Asn-Gly at the N-terminus of the protein. The gene was inserted into pRSET_A, an E. coli expression vector, and transformed into E. coli BL21 (DE3). The recombinant fusion protein was successfully co-expressed with pG-Tf2, a chaperone vector, in E. coli and purified by Ni-NTA column chromatography. The rhEGF was then released by hydroxylamine treatment and confirmed by SDS-PAGE. ELISA analysis showed that the activity of the free rhEGF was more than 92% similar to that of commercial EGF. The biological activity of the rhEGF was confirmed by a cell proliferation test with human skin fibroblasts.

본 연구의 목적은 재조합 인간 상피세포 성장인자(hEGF)의 발현 확인 및 정제의 용이성을 위해 단백질의 N-말단에 융합된 부분을 제거하기위하여 기존의 고가의 효소를 사용하지 않고 간단한 화학처리로 융합 태그를 절단하면서도 여전히 친화성 크로마토그래피로 정제가 가능한 재조합 hEGF의 경제적이며 공정이 단순화된 제조법을 제공하는 것이다. 인간 상피세포 성장 인자는 인간 세포 성장 및 증식에 매우 중요한 호르몬이며 이 단백질에 대한 발현 및 정제에 관한 많은 연구가 보고 되었다. 본 연구에서는 hEGF 유전자를 대장균 코돈에 최적화 하였으며 N-말단에 Hydroxylamine에 의한 절단이 가능한 Asparagine과 Glycine이 발현되도록 포함하여 설계하였다. 제조한 DNA를 대장균 발현 벡터인 pRSET_A에 삽입하여 발현용 균주 BL21 (DE3)에 형질전환 시켰으며 재조합 융합 단백질은 대장균에서 샤페론 벡터 pG-Tf2와 성공적으로 공발현 되었다. 발현된 융합 단백질은 Ni-NTA 컬럼 크로마토그래피로 정제한 후 Hydroxylamine으로 처리해 N-말단 융합부분을 제거하였으며 SDS-PAGE를 통해 확인하였다. ELISA 분석 결과 재조합 EGF의 활성이 상업용 hEGF와 92% 이상 유사한 것으로 나타났으며 피부 섬유아세포의 세포증식을 촉진하는 것으로 확인 되었다.

Keywords

Acknowledgement

본 연구는 2021년도 정부(과학기술정보통신부)의 재원으로 한국연구재단-현장맞춤형 이공계 인재양성 지원사업(No. 2017H1D8A1029990)과 건양대학교의 지원으로 수행되었음.

References

  1. G. Carpenter, S. Cohen, "Epidermal Growth Factor.", Annual Review of Biochemistry, 48(1): 193-216, 1979. DOI: https://doi.org/10.1146/annurev.bi.48.070179.001205
  2. R. C. Harris, E. Chung, R. J. Coffey, "EGF receptor ligands.", The EGF Receptor Family, Experimental Cell Research, 284(1): 2-13, 2003. DOI: https://doi.org/10.1016/S0014-4827(02)00105-2
  3. S. Cohen, G. Carpenter, "Human epidermal growth factor: isolation and chemical and biological properties", Proceedings of the National Academy of Sciences, 72(4), 1317-1321, 1975. DOI: https://doi.org/10.1073/pnas.72.4.1317
  4. R. S. Herbst, "Review of epidermal growth factor receptor biology.", International Journal of Radiation Oncology* Biology* Physics, 59(2), S21-S26, 2004. DOI: https://doi.org/10.1016/j.ijrobp.2003.11.041. PMID: 15142631.
  5. P. Martin, "Wound healing--aiming for perfect skin regeneration." Science, 276(5309), 75-81, 1997. DOI: https://doi.org/10.1126/science.276.5309.75
  6. S. Pastore, F. Mascia, V. Mariani, G. Girolomoni, "The epidermal growth factor receptor system in skin repair and inflammation.", Journal of Investigative Dermatology, 128(6), 1365-1374, 2008. DOI: https://doi.org/10.1038/sj.jid.5701184
  7. H. C. Chang, D. Y. Huang, N. L. Wu, R. Kannagi, "BLIMP1 transcriptionally induced by EGFR activation and post-translationally regulated by proteasome and lysosome is involved in keratinocyte differentiation, migration and inflammation.", Journal of dermatological science, 92(2), 151-161, 2018. DOI: https://doi.org/10.1016/j.jdermsci.2018.08.011
  8. M. J. Berridge, P. Lipp, M. D. Bootman "The versatility and universality of calcium signalling.", Nature reviews Molecular cell biology, 1(1), 11-21, 2000. DOI: https://doi.org/10.1038/35036035
  9. J. S. Kang, , H. N. La, S. U. Bak, H. J. Eom, "Development of Dermal Transduction Epidermal Growth Factor (EGF) Using A Skin Penetrating Functional Peptide." Journal of the Society of Cosmetic Scientists of Korea, 45(2), 175-184, 2019. DOI: https://doi.org/10.15230/SCSK.2019.45.2.175
  10. S. Yoshida, S. Kasuga, Y. Hirao, T. Fuwa, S. Nakagawa "Effect of biosynthetic human epidermal growth factor on the synthesis and secretion of mucin glycoprotein from primary culture of rabbit fundal mucosa cells." In vitro cellular & developmental biology, 23(7), 460-464, 1987. DOI: https://doi.org/10.1007/BF02628415
  11. R. H. Starkey, S. Cohen, D. N. Orth, "Epidermal growth factor: identification of a new hormone in human urine." Science, 189(4205), 800-802, 1975. DOI: https://doi.org/10.1126/science.1172293
  12. G. L. Rosano, A. C. Eduardo, "Recombinant protein expression in Escherichia coli: advances and challenges.", Frontiers in microbiology, 5, 172, 2014. DOI: https://doi.org/10.3389/fmicb.2014.00172
  13. T. K. Singha, P. Gulati, A. Mohanty, Y. P. Khasa "Efficient genetic approaches for improvement of plasmid based expression of recombinant protein in Escherichia coli: a review.", Process Biochemistry, 55, 17-31, 2017. DOI: https://doi.org/10.1016/j.procbio.2017.01.026
  14. S. J. Rao, S. Chatterjee, J. K. Pal. "Untranslated regions of mRNA and their role in regulation of gene expression in protozoan parasites.", Journal of biosciences, 42(1), 189-207, 2017. DOI: https://doi.org/10.1007/s12038-016-9660-7
  15. H. F. Ulrich, H. H. Manajit, "Molecular chaperones in the cytosol: from nascent chain to folded protein.", Science, 295(5561), 1852-1858, 2002. DOI: https://doi.org/10.1126/science.1068408
  16. S. Robin, D. M. Togashi, A. G. Ryder, J. G. Wall "Trigger factor from the psychrophilic bacterium Psychrobacter frigidicola is a monomeric chaperone.", Journal of bacteriology, 191(4), 1162-1168, 2009, DOI: https://doi.org/10.1128/JB.01137-08
  17. A. D. Marco, E. Deuerling, A. Mogk, T. Tomoyasu, B. Bukau "Chaperone-based procedure to increase yields of soluble recombinant proteins produced in E. coli." BMC biotechnology, 7(1), 1-9, 2007. DOI: https://doi.org/10.1186/1472-6750-7-32
  18. B. Bukau, E. Deuerling, C. Pfund, E. A. Craig, "Getting newly synthesized proteins into shape.", Cell, 101(2), 119-122, 2000, DOI: https://doi.org/10.1016/S0092-8674(00)80806-5
  19. P. Mahamad, C. Boonchird, W. Panbangred "High level accumulation of soluble diphtheria toxin mutant (CRM197) with co-expression of chaperones in recombinant Escherichia coli." Applied microbiology and biotechnology, 100(14), 6319-6330, 2016, DOI: https://doi.org/10.1007/s00253-016-7453-4
  20. J. Sambrook, D. W. Russell, Molecular Cloning: a laboratory manual third edition, COLD SPRING HARBOR LABORATORY PRESS, 2001, pp 15.6-15.8
  21. S. Orrapin, S. Intorasoot, "Recombinant expression of novel protegrin-1 dimer and LL-37-linker-histatin-5 hybrid peptide mediated biotin carboxyl carrier protein fusion partner." Protein expression and purification, 93, 46-53, 2014. DOI: https://doi.org/10.1016/j.pep.2013.10.010
  22. E. B. Jang, J. S. Kim, W. Y. Lee, "Expression of Recombinant Human Epidermal Growth Factor as a Active Form through Codon Optimization with E. coli and Co-expression of Chaperone", Journal of the Korea Academia-Industrial cooperation Society, 21(9), 559-568, 2020, DOI: https://doi.org/10.5762/KAIS.2020.21.9.559
  23. H. G. Seo, D. G. Kim, C. K. Lee, Culture cell Experiment Handbook, WORLDSCIENCE, 2007, pp 82-85
  24. F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, Short protocols in molecular biology fifth edition volumn 3, WILEY, 2002, pp 16.9-16.18