Acknowledgement
본 논문은 2020년도 중소벤처기업부의 상반기 중소기업 연구인력(고경력) 지원사업으로 수행되었음.
References
- S. H. Woo, Y. B. Cho, "Major Technologies and Introduction of Smart Factory." 2018.
- C. S. Seo, S. J. Jeong, S. C. Kim, "Establishing a Smart Factory to Improve Enterprise Productivity", The Journal of The Korean Institute of Communication Sciences, Vol35. No.6 43-49, 2018.
- S. Y. Kim, H. J. Kim, H. S. Ji, K. S. Kim, O. W. Kim, Y. D Jun, "Characteristics of Static Comfort with Changing Isocyanate/Polyol Mixing Ratio of Polyurethane Foam", The Korean Society Of Automotive Engineers, 954-954, 2019.
- H. S. Kim, J. W. Youn, "A study on foaming characteristics of polyurethane depending on environmental temperature and blowing agent content." Transactions of Materials Processing Vol18. No.3 256-261, 2009. DOI:https://doi.org/10.5228/KSPP.2009.18.3.256
- Bikard, J., Bruchon, J., Coupez, T., & Silva, L. Numerical simulation of 3D polyurethane expansion during manufacturing process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 309(1-3), 49-63, 2007. DOI:https://doi.org/10.1016/j.colsurfa.2007.04.025
- H. R. Yoon, "A Empirical Study on the Financial Stability Prediction Model of South Korea's Public Enterprises with Machine Learning Techniques", Ph. D, Hansung University, 19-22.
- M. M. C. Han, Y. S. Kim, C. K. Lee, "A Study on Defect Prediction Method Using Sensor Data and Machine Learning in Manufacturing Process", Entrue Journal of Information Technology, Vol17. No.1, 89-98, 2019.
- J. E. Ahn, J. Y. Jung, "Predicting and Interpreting Quality of CMP Process for Semiconductor Wafers Using Machine Learning." The Journal of Bigdata Vol4. No.2, 61-71, 2019. https://doi.org/10.36498/kbigdt.2019.4.2.61
- J. H. Choi, D. S. Seo. "Decision Trees and Its Applications", Journal of statistical analysis., Vol.4 No.1 61-83, 1999.
- .Navada, A., Ansari, A. N., Patil, S., & Sonkamble, B. A. "Overview of use of decision tree algorithms in machine learning." 2011 IEEE control and system graduate research colloquium. IEEE, 37-42, 2011. DOI:https://doi.org/10.1109/ICSGRC.2011.5991826
- Che, D., Liu, Q., Rasheed, K., & Tao, X, "Decision tree and ensemble learning algorithms with their applications in bioinformatics". Software tools and algorithms for biological systems. Springer, New York, NY, 191-199. 2011 DOI:https://doi.org/10.1007/978-1-4419-7046-6_19
- Y. S. Jang, B. J. Park, C. Y. Park, "Comparison study of K-nearest neighborhood classification algorithms", Journal of the Korean Data And Information Science Society, Vol30. No.5, 977-985, 2019. DOI:https://doi.org/10.7465/jkdi.2019.30.5.977
- Bzdok, Danilo, Martin Krzywinski, Naomi Altman, "Machine learning: supervised methods", Nat Methods 15, 5-6, 2018. DOI:https://doi.org/10.1038/nmeth.4551
- S. H. Min, "Improving an Ensemble Model by Optimizing Bootstrap Sampling", Journal of Internet Computing and Services, Vol17. No.2, 49-57, 2016. DOI:https://doi.org/10.7472/jksii.2016.17.2.49
- Vega-Pons, Sandro, Jose Ruiz-Shulcloper., Faramarz Gordaninejad, Xiaojie Wang, "A survey of clustering ensemble algorithms", International Journal of Pattern Recognition and Artificial Intelligence, Vol25. No.3 337-372, 2011. DOI:https://doi.org/10.1142/S0218001411008683
- Polikar, Robi. "Ensemble learning." Ensemble machine learning. Springer, Boston, MA, 1-34, 2012. DOI:https://doi.org/10.1007/978-1-4419-9326-7_1