DOI QR코드

DOI QR Code

A Study of the Salt Rejection from the Surface of Marine Waste using Ultra Fine Bubble

초미세기포를 이용한 해양쓰레기 표면 내 염분제거에 관한 연구

  • Kim, Bo-Min (Division of Environmental Technology, Korea Testing Laboratory) ;
  • Kim, Kwang-Koo (Division of Environmental Technology, Korea Testing Laboratory) ;
  • Park, Chan-Gyu (Division of Environmental Technology, Korea Testing Laboratory)
  • 김보민 (한국산업기술시험원 환경기술본부) ;
  • 김광구 (한국산업기술시험원 환경기술본부) ;
  • 박찬규 (한국산업기술시험원 환경기술본부)
  • Received : 2021.02.25
  • Accepted : 2021.06.04
  • Published : 2021.06.30

Abstract

Nano bubble water is used in various washing processes, including cleaning of solar panels, salt rejection of roads, and cleaning precision parts of machines. High cleaning efficiency and water conservation are obtained by applying nano bubbles during pretreatment of the marine waste cleaning system. This study compared the salt rejection of nano bubble water, and it was revealed that marine waste was produced by wood immersed in 200,000 mg/L NaCl solution. Using tap water and nano bubble water for washing, comparisons of the surface salt concentrations of wood were determined according to the nozzle, orifice diameter, pump speed and washing time. Decreased surface salt concentration was observed on the wood surface with increasing washing time. Water consumption was optimal between 5- and 10-seconds washing time. Increasing orifice diameter of the nozzle reduced the spraying pressure, with consequent increase in the wood surface salt concentration, thereby establishing the importance of orifice diameter of the nozzle. Compared to levels obtained with tap water, salt concentration of the wood surface after washing with nano bubble water was 2.2% lower with sector nozzle, and 30.9% lower with circular nozzle. In the washing experiment using nano bubble water, the salt concentration on the wood surface was about 9.5 mg/L lower when washed with sector nozzle than the circular nozzle.

나노버블수는 태양광 패널 청소, 도로의 염분 제거, 기계의 정밀 부품 청소 등 다양한 세척 공정에 사용된다. 해양쓰레기 세척 시스템의 전처리에 나노버블을 적용하면 높은 세척 효율과 물 절약이 가능하다. 본 연구에서는 나노버블수의 염분 제거율을 비교하기 위해 NaCl 200,000 mg/L 용액에 목재를 침적시켜 해양쓰레기를 제작하였다. 수돗물과 나노버블수를 이용하여 노즐 종류, 오리피스 직경, 펌프 회전수 및 세척 시간에 따른 목재 표면 염분농도를 비교하였다. 목재 표면 염분농도는 세척시간이 길어질수록 감소하였다. 하지만 물 사용량을 고려한 최적의 세척 시간은 5-10초 사이였다. 노즐의 오리피스 직경이 커질수록 분사압력은 낮아지며, 세척 후 목재 표면 염분농도는 높아졌다. 이는 노즐의 오리피스 직경이 세척 시스템에서 중요한 요인임을 나타낸다. 나노버블수를 이용한 세척 후 목재 표면 염분농도는 수돗물로 세척 후 목재 표면 염분농도에 비해 부채꼴형 노즐은 2.2 %, 원형 노즐은 30.9 % 낮았다. 또한, 나노버블수를 이용한 세척 실험에서 부채꼴형 노즐을 사용하여 세척하였을 때가 원형 노즐을 사용하였을 때보다 목재 표면 염분농도가 약 9.5 mg/L 낮았다.

Keywords

Acknowledgement

본 논문은 해양수산부 "해양플라스틱 쓰레기저감을 위한 기술개발"사업(20200584)의 연구과제로 수행되었음.

References

  1. F. Ronkay, B. Molnar, D. Gere, T. Gzigany, "Plastic waste from marine environment: Demonstration of possible routes for recycling by different manufacturing technologies", Waste Management, Vol.119, pp.101-110, 2020. DOI: https://doi.org/10.1016/j.wasman.2020.09.029
  2. K. J. Song, S. H. Han, T. J. Ha, "Changes of physiological properties of zelkova serrata to NaCl concentration in soil", Journal of Korea Society of Agricultural and Forest Meteorology, Vol.5, No.3, pp.166-171, 2003.
  3. Y. J. Kim, S. G. Han, D. H. Hwang, D. H. Lee, S. H. Kwon, H. J. Kim, "Physical composition and salt removal characteristics from coastal wastes", Journal of Korean Society of Urban Environment, Vol.16, pp.97-103, 2018.
  4. H. E. Choi, J. H. Jung, Y. L. Han, D. Y. Kim, B. G. Jung, Y. I. Choi, "A study on the treatment of oil contaminated soils with micro-nano bubbles soil washing system", Journal of Environmental Sciences, Vol.20, pp.1329-1336, 2011. DOI: https://doi.org/10.5322/jes.2011.20.10.1329
  5. J. H. Lee, S. H. Park, "A study on the rotating jet nozzle for washing sand filter in water purification plant", Journal of Korea Safety Management and Science, Vol.4, No.3, pp.177-187, 2002.
  6. S. G. Seo, S. H. Lee, J. H. Sohn, Y. Y. Jang, "Application of a full scale soil washing process for the remediation of contaminated soil around an abandoned mine", Journal of Korean Society of Soil and Groundwater Environment, Vol.13, No.2, pp.70-75, 2008.
  7. H. Chu, R. Khang, Y. Qi, Z. Kan, "Simulation and experimental test of waterless washing nozzles for fresh apricot", Biosystems Engineering, Vol.159, pp.97-108, 2017. DOI: https://doi.org/10.1016/j.biosystemseng.2017.05.001
  8. D. Tao, Z. Wu, A. Sobhy, "Investigation of nanobubble enhanced reverse anionic flotation of hematite and associated mechanisms", Powder Technology, Vol.379, pp.12-25, 2021. DOI: https://doi.org/10.1016/j.powtec.2020.10.040
  9. N. Tamura, A. Kaneko, S. I. Uesawa, M. Ike, "Development of non-chemical micro-bubble washing technology using a venturi tube", Japanese Journal of Multiphase Flow, Vol.27, No.5, pp.577-584, 2014. DOI: https://doi.org/10.3811/jjmf.27.577
  10. N. Ahmed, G. J. Jameson, "The effect of bubble size on the rate of flotation of fine particles", International Journal of Mineral Processing, Vol.14, No.3, pp.195-215, 1985. DOI: https://doi.org/10.1016/0301-7516(85)90003-1
  11. F. A. N. Maoming, T. A. O. Daniel, R. Honaker, L. U. O. Zhenfu, "Nanobubble generation and its application in froth flotation (Part I): nanobubble generation and its effects on properties of microbubble and millimeter scale bubble solutions", Mining Science and Technology (China), Vol.20, No.1, pp.1-19, 2010. DOI: https://doi.org/10.1016/s1674-5264(09)60154-x
  12. H. N. P. Dayarathne, J. W. Choi, A. Jang, "Enhancement of cleaning-in-place (CIP) of a reverse osmosis desalination process with air micro-nano bubbles", Desalination, Vol.422, pp.1-4, 2017. DOI: https://doi.org/10.1016/j.desal.2017.08.002
  13. A. Ushida, T. Hasegawa, N. Takahashi, T. Nakajima, S. Murao, T. Narumi, H. Uchiyama, "Effect of mixed nanobubble and microbubble liquids on the washing rate of cloth in an alternating flow", Journal of Surfactants and Detergents, Vol.15, No.6, pp.695-702, 2012. DOI: https://doi.org/10.1007/s11743-012-1348-x