DOI QR코드

DOI QR Code

Effect of High-molecular-weight Maleic Anhydride-grafted Polylactic Acid Compatibilizer on the Properties of Polylactic acid-based Wood Polymer Composites

말레산 무수물로 그래프트된 고분자량의 폴리락트산 상용화제가 폴리락트산 기반의 합성목재에 미치는 영향

  • Han, Dong-Heon (Department of Applied Chemical Engineering, Korea University of Technology and Education) ;
  • Lee, Jong In (Department of Applied Chemical Engineering, Korea University of Technology and Education) ;
  • Oh, Seung-Ju (Department of Applied Chemical Engineering, Korea University of Technology and Education) ;
  • Nam, Byeong Uk (Department of Applied Chemical Engineering, Korea University of Technology and Education) ;
  • Bae, Jin Woo (Department of Applied Chemical Engineering, Korea University of Technology and Education)
  • 한동헌 (한국기술교육대학교 응용화학공학과) ;
  • 이종인 (한국기술교육대학교 응용화학공학과) ;
  • 오승주 (한국기술교육대학교 응용화학공학과) ;
  • 남병욱 (한국기술교육대학교 응용화학공학과) ;
  • 배진우 (한국기술교육대학교 응용화학공학과)
  • Received : 2021.02.15
  • Accepted : 2021.06.04
  • Published : 2021.06.30

Abstract

High-molecular-weight maleic anhydride-grafted polylactic acids (HMMA-g-PLA) compatibilizers were prepared by melt grafting in a twin screw extruder using di(tert-butyl-perxoyisopropyl)benzene (PK-14; as initiator), maleic anhydride (MA), and divinylbenzene (DVB). To determine the properties of the prepared HMMA-g-PLA compatibilizers, Fourier transform infrared (FTIR), Melt index (MI), and back-titration analyses were performed. On increasing DVB concentration, grafting yield of HMMA-g-PLA increased but MI decreased because 𝛽-scission of PLA was restrained by the DVB, and thus, the molecular weight of HMMA-g-PLA increased. PLA-based wood-plastic composites (WPCs) were prepared using HMMA-g-PLA by melt blending through a single screw extruder. The flexural and impact strengths of WPCs compatibilized with HMMA-g-PLA were greater than those of WPCs produced without HMMA-g-PLA. Scanning electron microscope (SEM) studies indicated that increased mechanical properties were caused by excellent interfacial adhesion between PLA and wood fibers due to the addition of HMMA-g-PLA. However, rather high contents of HMMA-g-PLA reduced the mechanical properties of WPCs. We believe that lower molecular-weight of HMMA-g-PLA added as an compatibilizer, compared with PLA polymer, caused the reduction of mechanical properties.

Maleic anhydride (MA)와 divinylbenzene (DVB)을 개시제인 di(tert-butyl-perxoyisopropyl)benzene (PK-14)과 함께 이축 압출기에서 용융 그래프팅 반응을 통해 상용화제인 high-molecular-weight maleic anhydride-grafted polylactic acids (HMMA-g-PLA)를 제조하였다. 제조된 HMMA-g-PLA의 특성을 분석하기 위해 Fourier transform infrared (FTIR), Melt index (MI), 그리고 역적정을 실시하였다. HMMA-g-PLA는 DVB의 함량이 증가함에 따라 MA의 그래프팅율은 증가하나 MI는 감소하였는데, DVB의 도입으로 PLA의 𝛽-scission 반응이 억제되어 분자량이 증가되었기 때문이다. HMMA-g-PLA를 사용한 PLA기반 합성목재(wood-plastic composites, WPCs)는 matrix인 PLA에 보강재인 목재와 무기 충전재인 talc를 첨가하여 일축 압출기로 용융 블렌드하였다. 상용화제인 HMMA-g-PLA가 도입된 WPCs는 도입되지 않은 WPCs와 비교하여 더 높은 굴곡강도 및 충격강도를 보였다. 이것은 Scanning electron microscope (SEM) 분석을 통해 HMMA-g-PLA의 첨가로 PLA와 목분과의 계면 결합력이 우수해졌기 때문인 것을 알 수 있었다. 하지만 HMMA-g-PLA의 함량이 높을 때는 WPCs의 기계적 물성을 악화시켰다. 이는 도입된 HMMA-g-PLA 상용화제의 분자량이 PLA 고분자 수지보다 더 낮아 기계적 물성을 감소시킨 것으로 판단하였다.

Keywords

Acknowledgement

본 연구는 교육부의 산학공동기술개발과제[LINCPLUS-2019-19]와 대학혁신지원사업 및 한국기술교육대학교 교육연구진흥과제의 지원을 받아 연구되었음.

References

  1. J. Hong, D. S. Kim, "Effects of Coupling Agents and Nanosilicas on the Physical Properties of PVC/Wood Flour Composites", Polymer (Korea), Vol.39, No.4, pp.643-648, Jul. 2015. DOI: https://doi.org/10.7317/pk.2015.39.4.643
  2. D. Lee, B. J. Kim, "A Study on the Mechanical, Thermal, Morphological, and Water Absorption Properties of Wood Plastic Composites (WPCs) Filled with Talc and Environmentally-Friendly Flame Retardants", Journal of the Korea Furniture Society, Vol.27, No.2, pp.137-144, Apr. 2016. https://doi.org/10.22873/KOFUSO.2016.27.2.137
  3. J. W. Han, S. W. Cha, B. J. Jeon, K. S. Lee, "Characteristics of woodpowder-composite polymer in microcellular foaming process", KSAE 2009 Annual Conference and Exhibition, Korea, pp.2597-2601, Nov. 2009.
  4. Y. S. You, Y. S. Oh, S. H. Hong, S. W. Choi, "International trends in development, commercialization and market of bio-plastics", Clean Technology, Vol.21, No.3, pp.141-152, Sep. 2015. DOI: https://doi.org/10.7464/ksct.2015.21.3.141
  5. L. Zhang, S. Lv, C. Sun, L. Wan, H. Tan, Y, Zhang, "Effect of MAH-g-PLA on the properties of wood fiber/polylactic acid composites.", Polymers, Vol.9, No.11, pp.591, Nov. 2017. https://doi.org/10.3390/polym9110591
  6. J. Moon, M. H. Kim, Y. T. Lee, H. H. Lee, Y. H. Rho, "Study on the Biodegradable ability of Biodegradable Plastics PLA(Polylactic acid) by composting", Journal of the Korea Academia-Industrial cooperation Society, Vol.17, No.4, pp.596-605, Apr. 2016. DOI: https://doi.org/10.5762/KAIS.2016.17.4.596
  7. H. S. Choi, Y. Lee, Y. H. Kim, "Characteristics of Cellulose Acetate-g-Poly(L-lactic Acid) (CA-g-PLA) and Its Application as a Compatibilizer for CA/PLA Blends", Polymer (Korea), Vol.44, No.3, pp.309-317, May. 2020. DOI: https://doi.org/10.7317/pk.2020.44.3.309
  8. D. Carlson, L. Nie, R. Narayan, P. Dubois, "Maleation of polylactide (PLA) by reactive extrusion", Journal of Applied Polymer Science, Vol.72, No.4, pp.477-485, Feb. 1999. DOI: https://doi.org/10.1002/(SICI)1097-4628(19990425)72:4<477::AID-APP3>3.0.CO;2-Q
  9. S. Yi, S. Xu, Y. Fang, H. Wang, Q. Wang, "Effects of matrix modification on the mechanical properties of wood-polypropylene composites", Polymers, Vol.9, No.12, pp.712, Dec. 2017. DOI: https://doi.org/10.3390/polym9120712
  10. B. S. Park, D. S. Kim, "Effects of coupling agents and clay on the physical properties of wood flour/polyethylene composites", Polymer (Korea), Vol.35, No.2, pp.124-129, Mar. 2011. https://doi.org/10.7317/pk.2011.35.2.124
  11. B. R. Sheng, B. H. Xie, W. Yang, Q. G. Li, M. B. Yang, "Structure and properties of reactive extruded ethylene-block-co-polypropylene: Influence of dicumyl peroxide and divinylbenzene", Journal of Macromolecular Science, Part B, Vol.47, No.6, pp.1236-1250, Oct. 2008. DOI: https://doi.org/10.1080/00222340802403479
  12. S. Al-Malaika, E. Eddiyanto, "Reactive processing of polymers: Effect of bifunctional and tri-functional comonomers on melt grafting of glycidyl methacrylate onto polypropylene", Polymer degradation and stability, Vol.95, No.3, pp.353-362, Mar. 2010. DOI: https://doi.org/10.1016/j.polymdegradstab.2009.11.006
  13. J. E. Lee, H. E. Kim, B. U. Nam, "Preparation of MA-PLA Using Radical Initiator and Miscibility Improvement of PLA/PA11 Blends" Korea Academy Industrial Cooperation Society, Vol.20, No.4, pp.76-85, Apr. 2019. DOI: https://doi.org/10.5762/KAIS.2019.20.4.76
  14. J. M. Garcia-Martinez, S. Areso, E. P. Collar, "The transient nature of maximum maleic anhydride grafting of polypropylene: A mechanistic approach based on a consecutive reaction model. II. A comparison of the batch solution and molten state processes" Journal of Applied Polymer Science, Vol.104, No.1, pp.345-351, Jan. 2007. DOI: https://doi.org/10.1002/app.24458
  15. J. Wootthikanokkhan, P. Kasemwananimit, N. Sombatsompop, A. Kositchaiyong, S. Isarankura na Ayutthaya, N. Kaabbuathong, "Preparation of modified starch-grafted poly (lactic acid) and a study on compatibilizing efficacy of the copolymers in poly (lactic acid)/thermoplastic starch blends", Journal of Applied Polymer Science, Vol.126, No.S1, pp.E389-E396, Apr. 2012. DOI: https://doi.org/10.1002/app.36896
  16. B. U. Nam, Y. G. Son, "Enhanced impact strength of compatibilized poly (lactic acid)/polyamide 11 blends by a crosslinking agent" Journal of Applied Polymer Science, Vol.137, No.35, pp.49011, Sep. 2020. DOI: https://doi.org/10.1002/app.49011
  17. F. Berzin, J. J. Flat, B. Vergnes, "Grafting of maleic anhydride on polypropylene by reactive extrusion: effect of maleic anhydride and peroxide concentrations on reaction yield and products characteristics" Journal of Polymer Engineering, Vol.33, No.8, pp.673-682, Oct. 2013. DOI: https://doi.org/10.1515/polyeng-2013-0130
  18. S. A. Mousavi-Saghandikolaei, M. Frounchi, S. Dadbin, S. Augier, E. Passaglia, F. Ciardelli, "Modification of isotactic polypropylene by the free-radical grafting of 1, 1, 1-trimethylolpropane trimethacrylate" Journal of Applied Polymer Science, Vol.104, No.2, pp.950-958, Jan. 2007. DOI: https://doi.org/10.1002/app.25796
  19. F. Xie, W. Hu, L. Ding, K. Tian, Z. Wu, L. Li, "Synthesis of microporous organic polymers via radical polymerization of fumaronitrile with divinylbenzene" Polymer Chemistry, Vol.8, No.39, pp. 6106-6111, Nov. 2017. DOI: https://doi.org/10.1039/C7PY01240C
  20. J. I. Lee, J. W. Bae, S. L. Kim, J. E. Hong, B. U. Nam, "Study on Impact Resistance, Wear Resistance and Crystallization Kinetics of Polypropylene Modified by Complex Crosslinkers", Polymer (Korea), Vol.44, No.5, pp.603-609, Sep. 2020. DOI: https://doi.org/10.7317/pk.2020.44.5.603
  21. N. S. Yatigala, D. S. Bajwa, S. G. Bajwa, "Compatibilization improves physico-mechanical properties of biodegradable biobased polymer composites" Composites Part A: Applied Science and Manufacturing, Vol.107, pp.315-325, Apr. 2018. DOI: https://doi.org/10.1016/j.compositesa.2018.01.011