DOI QR코드

DOI QR Code

조립산업에서 공급 붕괴를 고려한 공급망 네트워크모델: 혼합유전알고리즘 접근법

Supply Chain Network Model Considering Supply Disruption in Assembly Industry: Hybrid Genetic Algorithm Approach

  • 투고 : 2021.05.05
  • 심사 : 2021.06.07
  • 발행 : 2021.06.30

초록

본 연구에서는 조립산업의 공급망(Supply chain)에서의 발생할 수 있는 공급붕괴(Supply disruption)를 고려한 공급망 네트워크(Supply chain network: SCN) 모델이 제안된다. 공급붕괴를 위해 공급자 붕괴(Supplier disruption)와 경로 붕괴(Route disruption)가 함께 SCN 모델에서 고려되며, 이러한 두 가지의 붕괴 현상을 함께 고려한 SCN 모델은 유연성(Flexibility)과 효율성(Efficiency)을 성취할 수 있게 된다. SCN 모델은 수리모형으로 표현되며, 혼합유전알고리즘(Proposed hybrid genetic algorithm: pro-HGA) 접근법을 이용해 이행된다. 수치실험에서는 몇몇 상이한 규모를 가진 SCN 모델을 이용해 제안된 pro-HGA 접근법의 수행도와 기존 접근법의 수행도를 비교분석하였으며, 공급자 수와 백업경로(Backup route) 수의 변화를 통한 민감도 분석을 실시하였다. 실험 결과, 제안된 pro-HGA 접근법의 효율성을 입증하였고, SCN 모델의 유연성과 효용성을 검증하였다. 마지막으로 본 연구 수행의 의의 및 향후 개선방향에 대해 논하였다.

This study proposes a supply chain network (SCN) model considering supply disruption in assembly industry. For supply disruption, supplier disruption and its route disruption are simultaneously taken into consideration in the SCN model. With the simultaneous consideration, the SCN model can achieve its flexibility and efficiency. A mathematical formulation is suggested for representing the SCN model, and a proposed hybrid genetic algorithm (pro-HGA) is used for implementing the mathematical formulation. In numerical experiment, the performance of the pro-HGA approach is compared with those of some conventional approaches using the SCN models with various scales, and a sensitivity analysis considering the change of the numbers of suppliers and backup routes is done. Experimental results show that the performances of the pro-HGA approach are superior to those of the conventional approaches, and the flexibility and efficiency of the SCN model considering supply disruption are proved. Finally, the significance of this study is summarized and a potential future research direction is mentioned in conclusion.

키워드

참고문헌

  1. Baghalian, A., Rezapour, S., and Farahani, R. Z. (2013). Robust supply chain network design with service level against disruptions and demand uncertainties: A real-life case, European Journal of Operational Research, 227, 199-215. http://dx.doi.org/10.1016/j.ejor.2012.12.017
  2. Chopra, S., and Sodhi, M. S. (2004). Managing risk to avoid supply chain breakdown, MIT Sloan Management Review, 46(1), 53-62.
  3. Gen, M. and Cheng, R. (1997). Genetic Algorithms and Engineering Design, John-Wiley & Sons. New York, NY, USA.
  4. Gen, M., and Cheng, R. (2000). Genetic Algorithms and Engineering Optimization, John-Wiley & Sons, New York, NY, USA.
  5. Gen, M., Lin, L., Yun, Y. S., and Inoue, H. (2018). Recent advances in hybrid priority-based genetic algorithms for logistics and SCM network design, Computers and Industrial Engineering, 115, 394-412.
  6. Jabbarzadeh, A., Haughton, M., and Khosrojerdi, A. (2018). Closed-loop supply chain network design under disruption risks: A robust approach with real world application, Computers and Industrial Engineering, 116, 178-191. https://doi.org/10.1016/j.cie.2017.12.025
  7. Kanagaraj, G., Ponnambalam, S. G., and Jawahar, N. (2013). A hybrid cuckoo search and genetic algorithm for reliability-redundancy allocation problems, Computers and Industrial Engineering, 66, 1115-1125. https://doi.org/10.1016/j.cie.2013.08.003
  8. Lin, L., Gen, M., and Wang, X. (2009). Integrated multistage logistics network design by using hybrid evolutionary algorithm, Computers and Industrial Engineering, 56, 854-873. https://doi.org/10.1016/j.cie.2008.09.037
  9. Lo, H. K., and Tung, Y. K. (2003). Network with degradable links: capacity analysis and design, Transportation Research Part B: Methodological, 37(4), 345-363. https://doi.org/10.1016/S0191-2615(02)00017-6
  10. Poudel, S. R., Marufuzzaman, M., and Bian, L. (2016). Designing a reliable bio-fuel supply chain network considering link failure probabilities, Computers and Industrial Engineering, 91, 85-99. https://doi.org/10.1016/j.cie.2015.11.002
  11. Ramshani, M., Ostrowski, J., Zhang, K., and Li, X. (2019). Two level uncapacitated facility location problem with disruptions, Computers and Industrial Engineering, 137. https://doi.org/10.1016/j.cie.2019.106089
  12. Savaskan, R. C., Bhattacharya, S., and Van Wassenhove, L. V. (2004). Closed-loop supply chain models with product manufacturing, Management Science, 50, 239-252. https://doi.org/10.1287/mnsc.1030.0186
  13. Sever, D., Dellaert, N., Van Woensel, T., and Kok, T. D. (2013). Dynamic shortest path problems: Hybrid routing policies considering network disruptions, Computers and Operations Research, 40, 2852-2863. https://doi.org/10.1016/j.cor.2013.06.014
  14. Tang, C. S. (2006). Perspectives in supply chain risk management, International Journal of Production Economics, 103, 451-488. https://doi.org/10.1016/j.ijpe.2005.12.006
  15. Waters, D. (2007). Supply Chain Risk Management: Vulnerability and Resilience in Logistics, Kogan Page limited, London, UK.
  16. Wang, X., Ruan, J., and Shi, Y. (2012). A recovery model for combinational disruptions in logistics delivery: Considering the real-world participators, International J ournal of P roduction Economics, 140, 508-520. https://doi.org/10.1016/j.ijpe.2012.07.001
  17. Xiao, T., and Yu, G. (2006). Supply chain disruption management and evolutionarily stable strategies of retailers in the quantity-setting duopoly situation with homogeneous goods, European Journal of Operational Research, 173, 648-668. https://doi.org/10.1016/j.ejor.2005.02.076
  18. Xinyu, L., and Liang, G. (2016). An effective hybrid genetic algorithm and Tabu search for flexible job shop scheduling problem, International Journal of Production Economics, 174, 93-110. https://doi.org/10.1016/j.ijpe.2016.01.016
  19. Yonhap News. (2021). Suez Canal Obstruction, https://www.yna.co.kr/view/AKR20210326006400111?input=1195m (Accessed on Mar. 26th, 2021)
  20. Yun, Y. S. (2006). Hybrid genetic algorithm with adaptive local search scheme, Computers and Industrial Engineering, 51, 128-141. https://doi.org/10.1016/j.cie.2006.07.005
  21. Yun, Y. S., Chuluunsukh, A., and Gen, M. (2020). Sustainable closed-loop supply chain design problem: A hybrid genetic algorithm approach, Mathematics, 8(1), 84 https://doi.org/10.3390/math8010084
  22. Yun, Y. S., Chuluunsukh, A., and Chen, X. (2018). Hybrid genetic algorithm for optimizing closed-loop supply chain model with direct shipment and delivery, New Physics: Sae Mulli, 68(6), 683-692. https://doi.org/10.3938/npsm.68.683
  23. Yun, Y. S., Chung, H. S., and Moon, C. U. (2013). Hybrid genetic algorithm approach for precedence-constrained sequencing problem, Computers and Industrial Engineering, 65, 137-147. https://doi.org/10.1016/j.cie.2011.11.019
  24. Zhang, Q., Manier, H., and Manier, M. A. (2012). A genetic algorithm with Tabu search procedure for flexible job shop scheduling with transportation constraints and bounded processing times, Computers and Operations Research, 39, 1713-1723. https://doi.org/10.1016/j.cor.2011.10.007