DOI QR코드

DOI QR Code

Tissue Adequacy and Safety of Percutaneous Transthoracic Needle Biopsy for Molecular Analysis in Non-Small Cell Lung Cancer: A Systematic Review and Meta-analysis

  • Bo Da Nam (Department of Radiology, Soonchunhyang University College of Medicine, Soonchunhyang University Seoul Hospital) ;
  • Soon Ho Yoon (Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine) ;
  • Hyunsook Hong (Medical Research Collaborating Center, Seoul National University Hospital) ;
  • Jung Hwa Hwang (Department of Radiology, Soonchunhyang University College of Medicine, Soonchunhyang University Seoul Hospital) ;
  • Jin Mo Goo (Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine) ;
  • Suyeon Park (Department of Biostatistics and Data Innovation, Soonchunhyang University Seoul Hospital)
  • Received : 2021.03.25
  • Accepted : 2021.06.07
  • Published : 2021.12.01

Abstract

Objective: We conducted a systematic review and meta-analysis of the tissue adequacy and complication rates of percutaneous transthoracic needle biopsy (PTNB) for molecular analysis in patients with non-small cell lung cancer (NSCLC). Materials and Methods: We performed a literature search of the OVID-MEDLINE and Embase databases to identify original studies on the tissue adequacy and complication rates of PTNB for molecular analysis in patients with NSCLC published between January 2005 and January 2020. Inverse variance and random-effects models were used to evaluate and acquire meta-analytic estimates of the outcomes. To explore heterogeneity across the studies, univariable and multivariable metaregression analyses were performed. Results: A total of 21 studies with 2232 biopsies (initial biopsy, 8 studies; rebiopsy after therapy, 13 studies) were included. The pooled rates of tissue adequacy and complications were 89.3% (95% confidence interval [CI]: 85.6%-92.6%; I2 = 0.81) and 17.3% (95% CI: 12.1%-23.1%; I2 = 0.89), respectively. These rates were 93.5% and 22.2% for the initial biopsies and 86.2% and 16.8% for the rebiopsies, respectively. Severe complications, including pneumothorax requiring chest tube placement and massive hemoptysis, occurred in 0.7% of the cases (95% CI: 0%-2.2%; I2 = 0.67). Multivariable meta-regression analysis showed that the tissue adequacy rate was not significantly lower in studies on rebiopsies (p = 0.058). The complication rate was significantly higher in studies that preferentially included older adults (p = 0.001). Conclusion: PTNB demonstrated an average tissue adequacy rate of 89.3% for molecular analysis in patients with NSCLC, with a complication rate of 17.3%. PTNB is a generally safe and effective diagnostic procedure for obtaining tissue samples for molecular analysis in NSCLC. Rebiopsy may be performed actively with an acceptable risk of complications if clinically required.

Keywords

Acknowledgement

This work was supported by the Soonchunhyang University Research Fund.

References

  1. Tam AL, Kim ES, Lee JJ, Ensor JE, Hicks ME, Tang X, et al. Feasibility of image-guided transthoracic core-needle biopsy in the BATTLE lung trial. J Thorac Oncol 2013;8:436-442  https://doi.org/10.1097/JTO.0b013e318287c91e
  2. Florentine BD, Helton RJ, Mitchell MM, Schmidt KE, Kozlov DB. Accuracy and adequacy of computed tomography-guided lung biopsies: experience from a community hospital. J Am Osteopath Assoc 2015;115:592-603  https://doi.org/10.7556/jaoa.2015.120
  3. Sakai H, Takeda M. Percutaneous transthoracic needle biopsy of the lung in the era of precision medicine. J Thorac Dis 2019;11:S1213-S1215  https://doi.org/10.21037/jtd.2019.03.20
  4. Gonzalez de Castro D, Clarke PA, Al-Lazikani B, Workman P. Personalized cancer medicine: molecular diagnostics, predictive biomarkers, and drug resistance. Clin Pharmacol Ther 2013;93:252-259  https://doi.org/10.1038/clpt.2012.237
  5. Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG, et al. Anaplastic lymphoma kinase inhibition in non-smallcell lung cancer. N Engl J Med 2010;363:1693-1703  https://doi.org/10.1056/NEJMoa1006448
  6. Planchard D, Popat S, Kerr K, Novello S, Smit EF, Faivre-Finn C, et al. Metastatic non-small cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 2018;29:iv192-iv237  https://doi.org/10.1093/annonc/mdy275
  7. Beck KS, Kim TJ, Lee KY, Kim YK, Kang JH, Han DH. CT-guided coaxial biopsy of malignant lung lesions: are cores from 20-gauge needle adequate for histologic diagnosis and molecular analysis? J Thorac Dis 2019;11:753-765  https://doi.org/10.21037/jtd.2019.02.48
  8. Rivera MP, Mehta AC, Wahidi MM. Establishing the diagnosis of lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 2013;143:e142S-e165S 
  9. Takeshita J, Masago K, Kato R, Hata A, Kaji R, Fujita S, et al. CT-guided fine-needle aspiration and core needle biopsies of pulmonary lesions: a single-center experience with 750 biopsies in Japan. AJR Am J Roentgenol 2015;204:29-34  https://doi.org/10.2214/AJR.14.13151
  10. Fontaine-Delaruelle C, Souquet PJ, Gamondes D, Pradat E, De Leusse A, Ferretti GR, et al. Negative predictive value of transthoracic core-needle biopsy: a multicenter study. Chest 2015;148:472-480 
  11. Lee C, Guichet PL, Abtin F. Percutaneous lung biopsy in the molecular profiling era. J Thorac Imaging 2017;32:63-67  https://doi.org/10.1097/RTI.0000000000000237
  12. Jo Y, Han DH, Beck KS, Park JS, Kim TJ. Practice pattern of transthoracic needle biopsy: 2016 survey in the members of Korean Society of Thoracic Radiology. Korean J Radiol 2017;18:1005-1011  https://doi.org/10.3348/kjr.2017.18.6.1005
  13. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med 2009;151:W65-W94  https://doi.org/10.7326/0003-4819-151-4-200908180-00136
  14. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004;350:2129-2139  https://doi.org/10.1056/NEJMoa040938
  15. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 2011;155:529-536  https://doi.org/10.7326/0003-4819-155-8-201110180-00009
  16. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003;327:557-560  https://doi.org/10.1136/bmj.327.7414.557
  17. Fintelmann FJ, Troschel FM, Kuklinski MW, McDermott S, Petranovic M, Digumarthy SR, et al. Safety and success of repeat lung needle biopsies in patients with epidermal growth factor receptor-mutant lung cancer. Oncologist 2019;24:1570-1576  https://doi.org/10.1634/theoncologist.2019-0158
  18. Gill RR, Murphy DJ, Kravets S, Sholl LM, Janne PA, Johnson BE. Success of genomic profiling of non-small cell lung cancer biopsies obtained by trans-thoracic percutaneous needle biopsy. J Surg Oncol 2018;118:1170-1177  https://doi.org/10.1002/jso.25241
  19. Hata A, Katakami N, Nanjo S, Okuda C, Kaji R, Imai Y. Rebiopsy of histological samples in pretreated non-small cell lung cancer: comparison among rebiopsy procedures. In Vivo 2017;31:475-479  https://doi.org/10.21873/invivo.11086
  20. Hong MH, Kim HR, Ahn BC, Heo SJ, Kim JH, Cho BC. Real-world analysis of the efficacy of Rebiopsy and EGFR mutation test of tissue and plasma samples in drug-resistant non-small cell lung cancer. Yonsei Med J 2019;60:525-534  https://doi.org/10.3349/ymj.2019.60.6.525
  21. Hsiao SH, Chung CL, Lee CM, Chen WY, Chou YT, Wu ZH, et al. Suitability of computed tomography-guided biopsy specimens for subtyping and genotyping of non-small-cell lung cancer. Clin Lung Cancer 2013;14:719-725  https://doi.org/10.1016/j.cllc.2013.06.002
  22. Kim H, Chae KJ, Yoon SH, Kim M, Keam B, Kim TM, et al. Repeat biopsy of patients with acquired resistance to EGFR TKIs: implications of biopsy-related factors on T790M mutation detection. Eur Radiol 2018;28:861-868  https://doi.org/10.1007/s00330-017-5006-6
  23. Komiya K, Nakashima C, Nakamura T, Hirakawa H, Abe T, Ogusu S, et al. Current status and problems of T790M detection, a molecular biomarker of acquired resistance to EGFR tyrosine kinase inhibitors, with liquid biopsy and rebiopsy. Anticancer Res 2018;38:3559-3566  https://doi.org/10.21873/anticanres.12628
  24. Lee K, Kim Y, Jung HA, Lee SH, Ahn JS, Ahn MJ, et al. Repeat biopsy procedures and T790M rates after afatinib, gefitinib, or erlotinib therapy in patients with lung cancer. Lung Cancer 2019;130:87-92  https://doi.org/10.1016/j.lungcan.2019.01.012
  25. Matsumoto T, Hasebe T, Baba Y, Chosa K, Kondo S, Yamada S, et al. Feasibility and safety of CT-guided intrathoracic and bone re-biopsy for non-small cell lung cancer. Anticancer Res 2018;38:3587-3592  https://doi.org/10.21873/anticanres.12632
  26. Nam BD, Kim TJ, Park K, Ahn MJ, Choi YL, Chung MJ, et al. Transthoracic rebiopsy for mutation analysis in lung adenocarcinoma: outcomes and risk factors for the acquisition of nondiagnostic specimens in 199 patients. Clin Lung Cancer 2019;20:e309-e316  https://doi.org/10.1016/j.cllc.2018.12.021
  27. Nosaki K, Satouchi M, Kurata T, Yoshida T, Okamoto I, Katakami N, et al. Re-biopsy status among non-small cell lung cancer patients in Japan: a retrospective study. Lung Cancer 2016;101:1-8  https://doi.org/10.1016/j.lungcan.2016.07.007
  28. Schneider F, Smith MA, Lane MC, Pantanowitz L, Dacic S, Ohori NP. Adequacy of core needle biopsy specimens and fine-needle aspirates for molecular testing of lung adenocarcinomas. Am J Clin Pathol 2015;143:193-200; quiz 306  https://doi.org/10.1309/AJCPMY8UI7WSFSYY
  29. Seto T, Nogami N, Yamamoto N, Atagi S, Tashiro N, Yoshimura Y, et al. Real-world EGFR T790M testing in advanced non-small-cell lung cancer: a prospective observational study in Japan. Oncol Ther 2018;6:203-215  https://doi.org/10.1007/s40487-018-0064-8
  30. Solomon SB, Zakowski MF, Pao W, Thornton RH, Ladanyi M, Kris MG, et al. Core needle lung biopsy specimens: adequacy for EGFR and KRAS mutational analysis. AJR Am J Roentgenol 2010;194:266-269  https://doi.org/10.2214/AJR.09.2858
  31. Tian P, Wang Y, Li L, Zhou Y, Luo W, Li W. CT-guided transthoracic core needle biopsy for small pulmonary lesions: diagnostic performance and adequacy for molecular testing. J Thorac Dis 2017;9:333-343  https://doi.org/10.21037/jtd.2017.02.16
  32. Tokaca N, Barth S, O'Brien M, Bhosle J, Fotiadis N, Wotherspoon A, et al. Molecular adequacy of image-guided rebiopsies for molecular retesting in advanced non-small cell lung cancer: a single-center experience. J Thorac Oncol 2018;13:63-72  https://doi.org/10.1016/j.jtho.2017.09.1958
  33. Yoon HJ, Lee HY, Lee KS, Choi YL, Ahn MJ, Park K, et al. Repeat biopsy for mutational analysis of non-small cell lung cancers resistant to previous chemotherapy: adequacy and complications. Radiology 2012;265:939-948  https://doi.org/10.1148/radiol.12112613
  34. Zhuang YP, Wang HY, Shi MQ, Zhang J, Feng Y. Use of CT-guided fine needle aspiration biopsy in epidermal growth factor receptor mutation analysis in patients with advanced lung cancer. Acta Radiol 2011;52:1083-1087  https://doi.org/10.1258/ar.2011.110150
  35. Torrisi JM, Schwartz LH, Gollub MJ, Ginsberg MS, Bosl GJ, Hricak H. CT findings of chemotherapy-induced toxicity: what radiologists need to know about the clinical and radiologic manifestations of chemotherapy toxicity. Radiology 2011;258:41-56  https://doi.org/10.1148/radiol.10092129
  36. Min JH, Lee HY, Lim H, Ahn MJ, Park K, Chung MP, et al. Drug-induced interstitial lung disease in tyrosine kinase inhibitor therapy for non-small cell lung cancer: a review on current insight. Cancer Chemother Pharmacol 2011;68:1099-1109  https://doi.org/10.1007/s00280-011-1737-2
  37. Yoon SH, Park CM, Lee KH, Lim KY, Suh YJ, Im DJ, et al. Analysis of complications of percutaneous transthoracic needle biopsy using CT-guidance modalities in a multicenter cohort of 10568 biopsies. Korean J Radiol 2019;20:323-331  https://doi.org/10.3348/kjr.2018.0064
  38. Lim WH, Park CM, Yoon SH, Lim HJ, Hwang EJ, Lee JH, et al. Time-dependent analysis of incidence, risk factors and clinical significance of pneumothorax after percutaneous lung biopsy. Eur Radiol 2018;28:1328-1337  https://doi.org/10.1007/s00330-017-5058-7
  39. Kuban JD, Tam AL, Huang SY, Ensor JE, Philip AS, Chen GJ, et al. The effect of needle gauge on the risk of pneumothorax and chest tube placement after percutaneous computed tomographic (CT)-guided lung biopsy. Cardiovasc Intervent Radiol 2015;38:1595-1602  https://doi.org/10.1007/s00270-015-1097-0
  40. Covey AM, Gandhi R, Brody LA, Getrajdman G, Thaler HT, Brown KT. Factors associated with pneumothorax and pneumothorax requiring treatment after percutaneous lung biopsy in 443 consecutive patients. J Vasc Interv Radiol 2004;15:479-483  https://doi.org/10.1097/01.RVI.0000124951.24134.50
  41. Sharma G, Goodwin J. Effect of aging on respiratory system physiology and immunology. Clin Interv Aging 2006;1:253-260  https://doi.org/10.2147/ciia.2006.1.3.253
  42. Souza FF, Smith A, Araujo C, Jagannathan J, Johnston C, O'Regan K, et al. New targeted molecular therapies for cancer: radiological response in intrathoracic malignancies and cardiopulmonary toxicity: what the radiologist needs to know. Cancer Imaging 2014;14:26 
  43. Pietra GG. Pathologic mechanisms of drug-induced lung disorders. J Thorac Imaging 1991;6:1-7  https://doi.org/10.1097/00005382-199101000-00003
  44. Zhan P, Zhu QQ, Miu YY, Liu YF, Wang XX, Zhou ZJ, et al. Comparison between endobronchial ultrasound-guided transbronchial biopsy and CT-guided transthoracic lung biopsy for the diagnosis of peripheral lung cancer: a systematic review and meta-analysis. Transl Lung Cancer Res 2017;6:23-34  https://doi.org/10.21037/tlcr.2017.01.01
  45. Ishii H, Azuma K, Yamada K, Matsuo N, Nakamura M, Tokito T, et al. Accuracy of transbronchial biopsy as a rebiopsy method for patients with relapse of advanced non-small-cell lung cancer after systemic chemotherapy. BMJ Open Respir Res 2017;4:e000163 
  46. Cicek T, Ozturk A, Yilmaz A, Aktas Z, Demirag F, Akyurek N. Adequacy of EBUS-TBNA specimen for mutation analysis of lung cancer. Clin Respir J 2019;13:92-97  https://doi.org/10.1111/crj.12985
  47. Kirita K, Izumo T, Matsumoto Y, Hiraishi Y, Tsuchida T. Bronchoscopic re-biopsy for mutational analysis of non-small cell lung cancer. Lung 2016;194:371-378  https://doi.org/10.1007/s00408-016-9864-5
  48. Kim J, Kang HJ, Moon SH, Lee JM, Kim HY, Lee GK, et al. Endobronchial ultrasound-guided transbronchial needle aspiration for re-biopsy in previously treated lung cancer. Cancer Res Treat 2019;51:1488-1499  https://doi.org/10.4143/crt.2019.031
  49. Izumo T, Matsumoto Y, Chavez C, Tsuchida T. Re-biopsy by endobronchial ultrasound procedures for mutation analysis of non-small cell lung cancer after EGFR tyrosine kinase inhibitor treatment. BMC Pulm Med 2016;16:106 
  50. Goag EK, Lee JM, Chung KS, Kim SY, Leem AY, Song JH, et al. Usefulness of bronchoscopic rebiopsy of non-small cell lung cancer with acquired resistance to epidermal growth factor receptor-tyrosine kinase inhibitor. J Cancer 2018;9:1113-1120  https://doi.org/10.7150/jca.21650
  51. Luo W, Rao M, Qu J, Luo D. Applications of liquid biopsy in lung cancer-diagnosis, prognosis prediction, and disease monitoring. Am J Transl Res 2018;10:3911-3923 
  52. Wei B, Zhao C, Li J, Zhao J, Ren P, Yang K, et al. Combined plasma and tissue genotyping of EGFR T790M benefits NSCLC patients: a real-world clinical example. Mol Oncol 2019;13:1226-1234  https://doi.org/10.1002/1878-0261.12481
  53. Zhou J, Zhao C, Zhao J, Wang Q, Chu X, Li J, et al. Re-biopsy and liquid biopsy for patients with non-small cell lung cancer after EGFR-tyrosine kinase inhibitor failure. Thorac Cancer 2019;10:957-965  https://doi.org/10.1111/1759-7714.13035
  54. Jamshidi N, Huang D, Abtin FG, Loh CT, Kee ST, Suh RD, et al. Genomic adequacy from solid tumor core needle biopsies of ex vivo tissue and in vivo lung masses: prospective study. Radiology 2017;282:903-912 https://doi.org/10.1148/radiol.2016132230