DOI QR코드

DOI QR Code

Left Ventricular Remodeling in Patients with Primary Aldosteronism: A Prospective Cardiac Magnetic Resonance Imaging Study

  • Tao Wu (Department of Radiology, West China Hospital, Sichuan University) ;
  • Yan Ren (Department of Endocrinology and Metabolism, West China Hospital, Sichuan University) ;
  • Wei Wang (Department of Endocrinology and Metabolism, West China Hospital, Sichuan University) ;
  • Wei Cheng (Department of Radiology, West China Hospital, Sichuan University) ;
  • Fangli Zhou (Department of Endocrinology and Metabolism, West China Hospital, Sichuan University) ;
  • Shuai He (Department of Radiology, West China Hospital, Sichuan University) ;
  • Xiumin Liu (Department of Radiology, West China Hospital, Sichuan University) ;
  • Lei Li (Department of Radiology, West China Hospital, Sichuan University) ;
  • Lu Tang (Department of Radiology, West China Hospital, Sichuan University) ;
  • Qiao Deng (Department of Radiology, West China Hospital, Sichuan University) ;
  • Xiaoyue Zhou (MR Collaboration, Siemens Healthcare) ;
  • Yucheng Chen (Department of Cardiology, West China Hospital, Sichuan University) ;
  • Jiayu Sun (Department of Radiology, West China Hospital, Sichuan University)
  • Received : 2020.11.02
  • Accepted : 2021.04.25
  • Published : 2021.10.01

Abstract

Objective: This study used cardiac magnetic resonance imaging (MRI) to compare the characteristics of left ventricular remodeling in patients with primary aldosteronism (PA) with those of patients with essential hypertension (EH) and healthy controls (HCs). Materials and Methods: This prospective study enrolled 35 patients with PA, in addition to 35 age- and sex-matched patients with EH, and 35 age- and sex-matched HCs, all of whom underwent comprehensive clinical and cardiac MRI examinations. The analysis of variance was used to detect the differences in the characteristics of left ventricular remodeling among the three groups. Univariable and multivariable linear regression analyses were used to determine the relationships between left ventricular remodeling and the physiological variables. Results: The left ventricular end-diastolic volume index (EDVi) (mean ± standard deviation [SD]: 85.1 ± 13.0 mL/m2 for PA, 75.9 ± 14.3 mL/m2 for EH, and 77.3 ± 12.8 mL/m2 for HC; p = 0.010), left ventricular end-systolic volume index (ESVi) (mean ± SD: 35.2 ± 9.8 mL/m2 for PA, 30.7 ± 8.1 mL/m2 for EH, and 29.5 ± 7.0 mL/m2 for HC; p = 0.013), left ventricular mass index (mean ± SD: 65.8 ± 16.5 g/m2 for PA, 56.9 ± 12.1 g/m2 for EH, and 44.1 ± 8.9 g/m2 for HC; p < 0.001), and native T1 (mean ± SD: 1224 ± 39 ms for PA, 1201 ± 47 ms for EH, and 1200 ± 44 ms for HC; p = 0.041) values were higher in the PA group compared to the EH and HC groups. Multivariable linear regression demonstrated that log (plasma aldosterone-to-renin ratio) was independently correlated with EDVi and ESVi. Plasma aldosterone was independently correlated with native T1. Conclusion: Patients with PA showed a greater degree of ventricular hypertrophy and enlargement, as well as myocardial fibrosis, compared to those with EH. Cardiac MRI T1 mapping can detect left ventricular myocardial fibrosis in patients with PA.

Keywords

Acknowledgement

This work was supported by grants from the Key R & D projects in Sichuan Province (No. 2020YFS0123) and 1·3·5 Project for Disciplines of Excellence-Clinical Research Incubation Project (2018HXFH009).

References

  1. Byrd JB, Turcu AF, Auchus RJ. Primary aldosteronism: practical approach to diagnosis and management. Circulation 2018;138:823-835 https://doi.org/10.1161/CIRCULATIONAHA.118.033597
  2. Funder JW, Carey RM, Mantero F, Murad MH, Reincke M, Shibata H, et al. The management of primary aldosteronism: case detection, diagnosis, and treatment: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 2016;101:1889-1916 https://doi.org/10.1210/jc.2015-4061
  3. Monticone S, D'Ascenzo F, Moretti C, Williams TA, Veglio F, Gaita F, et al. Cardiovascular events and target organ damage in primary aldosteronism compared with essential hypertension: a systematic review and meta-analysis. Lancet Diabetes Endocrinol 2018;6:41-50 https://doi.org/10.1016/S2213-8587(17)30319-4
  4. Milliez P, Girerd X, Plouin PF, Blacher J, Safar ME, Mourad JJ. Evidence for an increased rate of cardiovascular events in patients with primary aldosteronism. J Am Coll Cardiol 2005;45:1243-1248 https://doi.org/10.1016/j.jacc.2005.01.015
  5. Udelson JE. Left ventricular shape: the forgotten stepchild of remodeling parameters. JACC Heart Fail 2017;5:179-181 https://doi.org/10.1016/j.jchf.2017.01.005
  6. Kirkpatrick JN, St John Sutton M. Assessment of ventricular remodeling in heart failure clinical trials. Curr Heart Fail Rep 2012;9:328-336 https://doi.org/10.1007/s11897-012-0116-6
  7. Tomoaia R, Beyer RS, Simu G, Serban AM, Pop D. Understanding the role of echocardiography in remodeling after acute myocardial infarction and development of heart failure with preserved ejection fraction. Med Ultrason 2019;21:69-76 https://doi.org/10.11152/mu-1768
  8. Yang Y, Zhu LM, Xu JZ, Tang XF, Gao PJ. Comparison of left ventricular structure and function in primary aldosteronism and essential hypertension by echocardiography. Hypertens Res 2017;40:243-250 https://doi.org/10.1038/hr.2016.127
  9. Lee HH, Hung CS, Wu XM, Wu VC, Liu KL, Wang SM, et al. Myocardial ultrasound tissue characterization of patients with primary aldosteronism. Ultrasound Med Biol 2013;39:54-61 https://doi.org/10.1016/j.ultrasmedbio.2012.08.023
  10. Vasan RS, Evans JC, Benjamin EJ, Levy D, Larson MG, Sundstrom J, et al. Relations of serum aldosterone to cardiac structure: gender-related differences in the Framingham Heart Study. Hypertension 2004;43:957-962 https://doi.org/10.1161/01.HYP.0000124251.06056.8e
  11. Basman C, Parmar YJ, Kronzon I. Intracardiac echocardiography for structural heart and electrophysiological interventions. Curr Cardiol Rep 2017;19:102
  12. Bai AD, Steinberg M, Showler A, Burry L, Bhatia RS, Tomlinson GA, et al. Diagnostic accuracy of transthoracic echocardiography for infective endocarditis findings using transesophageal echocardiography as the reference standard: a meta-analysis. J Am Soc Echocardiogr 2017;30:639-646.e8 https://doi.org/10.1016/j.echo.2017.03.007
  13. McCrohon JA, Moon JC, Prasad SK, McKenna WJ, Lorenz CH, Coats AJ, et al. Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance. Circulation 2003;108:54-59 https://doi.org/10.1161/01.CIR.0000078641.19365.4C
  14. Choudhury L, Mahrholdt H, Wagner A, Choi KM, Elliott MD, Klocke FJ, et al. Myocardial scarring in asymptomatic or mildly symptomatic patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 2002;40:2156-2164 https://doi.org/10.1016/S0735-1097(02)02602-5
  15. Simonetti OP, Kim RJ, Fieno DS, Hillenbrand HB, Wu E, Bundy JM, et al. An improved MR imaging technique for the visualization of myocardial infarction. Radiology 2001;218:215-223 https://doi.org/10.1148/radiology.218.1.r01ja50215
  16. Reiter U, Reiter C, Krauter C, Fuchsjager M, Reiter G. Cardiac magnetic resonance T1 mapping. Part 2: diagnostic potential and applications. Eur J Radiol 2018;109:235-247 https://doi.org/10.1016/j.ejrad.2018.10.013
  17. Muscogiuri G, Suranyi P, Schoepf UJ, De Cecco CN, Secinaro A, Wichmann JL, et al. Cardiac magnetic resonance T1-mapping of the myocardium. J Thorac Imaging 2018;33:71-80 https://doi.org/10.1097/RTI.0000000000000270
  18. Messroghli DR, Moon JC, Ferreira VM, Grosse-Wortmann L, He T, Kellman P, et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J Cardiovasc Magn Reson 2017;19:75
  19. Salerno M, Kramer CM. Advances in parametric mapping with CMR imaging. JACC Cardiovasc Imaging 2013;6:806-822 https://doi.org/10.1016/j.jcmg.2013.05.005
  20. van Oorschot JW, Gho JM, van Hout GP, Froeling M, Jansen Of Lorkeers SJ, Hoefer IE, et al. Endogenous contrast MRI of cardiac fibrosis: beyond late gadolinium enhancement. J Magn Reson Imaging 2015;41:1181-1189 https://doi.org/10.1002/jmri.24715
  21. Taylor AJ, Salerno M, Dharmakumar R, Jerosch-Herold M. T1 mapping: basic techniques and clinical applications. JACC Cardiovasc Imaging 2016;9:67-81
  22. Redheuil A, Blanchard A, Pereira H, Raissouni Z, Lorthioir A, Soulat G, et al. Aldosterone-related myocardial extracellular matrix expansion in hypertension in humans: a proof-of-concept study by cardiac magnetic resonance. JACC Cardiovasc Imaging 2020;13:2149-2159 https://doi.org/10.1016/j.jcmg.2020.06.026
  23. Nadruz W. Myocardial remodeling in hypertension. J Hum Hypertens 2015;29:1-6 https://doi.org/10.1038/jhh.2014.36
  24. Kramer CM, Barkhausen J, Flamm SD, Kim RJ, Nagel E; Society for Cardiovascular Magnetic Resonance Board of Trustees Task Force on Standardized Protocols. Standardized cardiovascular magnetic resonance (CMR) protocols 2013 update. J Cardiovasc Magn Reson 2013;15:91
  25. de Meester de Ravenstein C, Bouzin C, Lazam S, Boulif J, Amzulescu M, Melchior J, et al. Histological validation of measurement of diffuse interstitial myocardial fibrosis by myocardial extravascular volume fraction from Modified Look-Locker imaging (MOLLI) T1 mapping at 3 T. J Cardiovasc Magn Reson 2015;17:48
  26. Catena C, Colussi G, Nadalini E, Chiuch A, Baroselli S, Lapenna R, et al. Cardiovascular outcomes in patients with primary aldosteronism after treatment. Arch Intern Med 2008;168:80-85 https://doi.org/10.1001/archinternmed.2007.33
  27. Freel EM, Mark PB, Weir RA, McQuarrie EP, Allan K, Dargie HJ, et al. Demonstration of blood pressure-independent noninfarct myocardial fibrosis in primary aldosteronism: a cardiac magnetic resonance imaging study. Circ Cardiovasc Imaging 2012;5:740-747 https://doi.org/10.1161/CIRCIMAGING.112.974576
  28. Gaddam K, Corros C, Pimenta E, Ahmed M, Denney T, Aban I, et al. Rapid reversal of left ventricular hypertrophy and intracardiac volume overload in patients with resistant hypertension and hyperaldosteronism: a prospective clinical study. Hypertension 2010;55:1137-1142 https://doi.org/10.1161/HYPERTENSIONAHA.109.141531
  29. Mark PB, Boyle S, Zimmerli LU, McQuarrie EP, Delles C, Freel EM. Alterations in vascular function in primary aldosteronism: a cardiovascular magnetic resonance imaging study. J Hum Hypertens 2014;28:92-97 https://doi.org/10.1038/jhh.2013.70
  30. Su MY, Wu VC, Yu HY, Lin YH, Kuo CC, Liu KL, et al. Contrast-enhanced MRI index of diffuse myocardial fibrosis is increased in primary aldosteronism. J Magn Reson Imaging 2012;35:1349-1355 https://doi.org/10.1002/jmri.23592
  31. Weber KT, Janicki JS, Pick R, Capasso J, Anversa P. Myocardial fibrosis and pathologic hypertrophy in the rat with renovascular hypertension. Am J Cardiol 1990;65:1G-7G https://doi.org/10.1016/0002-9149(90)90952-W
  32. Brilla CG, Pick R, Tan LB, Janicki JS, Weber KT. Remodeling of the rat right and left ventricles in experimental hypertension. Circ Res 1990;67:1355-1364 https://doi.org/10.1161/01.RES.67.6.1355
  33. Okoshi MP, Yan X, Okoshi K, Nakayama M, Schuldt AJ, O'Connell TD, et al. Aldosterone directly stimulates cardiac myocyte hypertrophy. J Card Fail 2004;10:511-518 https://doi.org/10.1016/j.cardfail.2004.03.002
  34. Grytaas MA, Sellevag K, Thordarson HB, Husebye ES, Lovas K, Larsen TH. Cardiac magnetic resonance imaging of myocardial mass and fibrosis in primary aldosteronism. Endocr Connect 2018;7:413-424 https://doi.org/10.1530/EC-18-0039
  35. Brooks J, Kramer CM, Salerno M. Markedly increased volume of distribution of gadolinium in cardiac amyloidosis demonstrated by T1 mapping. J Magn Reson Imaging 2013;38:1591-1595 https://doi.org/10.1002/jmri.24078
  36. Puntmann VO, D'Cruz D, Smith Z, Pastor A, Choong P, Voigt T, et al. Native myocardial T1 mapping by cardiovascular magnetic resonance imaging in subclinical cardiomyopathy in patients with systemic lupus erythematosus. Circ Cardiovasc Imaging 2013;6:295-301 https://doi.org/10.1161/CIRCIMAGING.112.000151
  37. Ntusi NAB, Piechnik SK, Francis JM, Ferreira VM, Matthews PM, Robson MD, et al. Diffuse myocardial fibrosis and inflammation in rheumatoid arthritis: insights from CMR T1 mapping. JACC Cardiovasc Imaging 2015;8:526-536 https://doi.org/10.1016/j.jcmg.2014.12.025
  38. Puntmann VO, Voigt T, Chen Z, Mayr M, Karim R, Rhode K, et al. Native T1 mapping in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated cardiomyopathy. JACC Cardiovasc Imaging 2013;6:475-484 https://doi.org/10.1016/j.jcmg.2012.08.019
  39. Funder JW. Aldosterone and mineralocorticoid receptors-physiology and pathophysiology. Int J Mol Sci 2017;18:1032
  40. Sun Y, Zhang J, Lu L, Chen SS, Quinn MT, Weber KT. Aldosterone-induced inflammation in the rat heart: role of oxidative stress. Am J Pathol 2002;161:1773-1781 https://doi.org/10.1016/S0002-9440(10)64454-9
  41. Zannad F, McMurray JJ, Krum H, van Veldhuisen DJ, Swedberg K, Shi H, et al. Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med 2011;364:11-21 https://doi.org/10.1056/NEJMoa1009492
  42. Nakamura M, Kido T, Kido T, Watanabe K, Schmidt M, Forman C, et al. Non-contrast compressed sensing whole-heart coronary magnetic resonance angiography at 3T: a comparison with conventional imaging. Eur J Radiol 2018;104:43-48 https://doi.org/10.1016/j.ejrad.2018.04.025