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INTRODUCTION

A time-to-event analysis is an analysis of any dichotomous 
outcome (i.e., events vs. no events) occurring over time. 
Survival analysis is used practically as a synonym for time-
to-event analysis although time-to-event analysis is not 
restricted to death (as the event) and survival. Survival 
analysis has been increasingly used in imaging research 
studies. Examples include studies evaluating the association 
between imaging findings/biomarkers and patient survival 
and image-based modelling studies to predict survival 
[1-4]. We have noticed numerous such studies reporting 
the methods and results incompletely or unclearly, either 
among manuscripts submitted to the Korean Journal of 
Radiology or those published in other journals and other 
fields of medical research [5-9]. The purpose of this review 
is to list the relatively frequent mistakes in reporting 
survival analysis observed in research studies in the field 
of imaging research. This article focuses on the adequacy 
of description and clarity in reporting survival analysis. 
It does not intend to discuss more fundamental issues 
regarding the methodological appropriateness of survival 
analysis, such as non-informative censoring, proportional 
hazards assumption, time-dependent covariates and 
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coefficients, immortal time bias, and competing risks [10-
13]. Researchers should confirm in the first place whether 
their analyses considered the fundamental methodological 
issues well. This article also does not cover reporting of the 
studies to evaluate the performance of survival prediction 
models, for which the methodologic guide can be found 
elsewhere [14].

The Basics

Survival analysis observes the development of events of 
interest (such as death) as follow-up time elapses, and the 
survival curve is a plot of the probability (%) of staying 
free of events until a certain follow-up time, referred to as 
survival probability or cumulative survival, on the y-axis 
against the follow-up time on the x-axis (Fig. 1). An 
alternative plot of ‘100% – survival probability’ referred to 
as cumulative incidence of events or incidence proportion 
[15], against the follow-up time can also be drawn. Patients 
may drop out of study observation before developing events, 
and they are referred to as censored patients. Although we 
do not know what happened to the censored patients after 
the censored time, we know that they were free of events 
until the time of censoring. Therefore, they still contribute 
useful information that should be included when analyzing 
survival. The Kaplan–Meier method is a popular method to 
create a survival curve considering the censored patients 
(Fig. 1). More explanations about how to construct a 
Kaplan–Meier survival curve can be found elsewhere [14]. 
The related statistical parameters and analytic methods 
commonly used for survival analysis are summarized in 
Figure 1.
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Common Mistakes

Mistake 1: Unclear Definition of Events
A sound survival analysis starts with a clear definition 

of events. The definitions are well-known for some 
circumstances, such as the analysis of overall survival 
in cancer patients, for which the events are death from 

any cause [16]. However, the definitions may often vary 
according to research questions, clinical settings, or cancer 
types [17-22]. For example, even if disease-free survival 
in oncologic survival analysis considers disease recurrence 
or death from any cause as events, the exact definition 
of disease recurrence may vary across studies. Therefore, 
providing a clear description of the definition of events 

100

90

80

70

60

50

40

30

20

10

0

Su
rv

iv
al

 p
ro

ba
bi

lit
y 

(%
)

0	 60	 120	 180	 240	 300	 360	 420	 480	 540	 600	 660	 720	 780	 840	 900

32	 32	 31	 30	 30	 28	 27	 26	 26	 24	 19	 13	 9	 6	 1	 0

31	 31	 30	 28	 27	 24	 21	 21	 20	 15	 12	 8	 3	 3	 1	 0

Time (day)

Number at risk

Comparison of survival curves as a whole using
  • Log-rank test: p = 0.007
  • �Cox regression to compare the hazards (slopes  

of the curves): HR = 2.98 (reference: imaging 
biomarker –), p = 0.011

Comparison of survival at
a particular time using z-test:

90.4% vs. 73.1% at 1 year 
(p = 0.075)

Read across at 50% to determine

Hazard (imaging biomarker –)

Hazard 

(imaging biomarker +)

M
edian survival tim

e:
622 days in im

aging biom
arker +

Group: imaging biomaker –

Imaging biomaker –

Group: imaging biomaker +

Imaging biomaker +

Fig. 1. Example Kaplan–Meier survival curves and a graphic summary of the related statistical parameters and statistical methods 
commonly used for survival analysis. Two Kaplan–Meier survival curves, one each for patients with (red) and without (green) the imaging 
biomarker, are shown. The Kaplan–Meier method recalculates the survival probability every time a new patient develops an event, which 
decreases as shown by a downward step in the curve. Downward blips represent the censored patients. When a patient is censored, the survival 
curve does not dip down. The mean survival time in the sense of the mean length of time a subject can be expected to survive cannot be 
calculated until the last patient has developed an event. The median survival time can be obtained if the survival probability has dropped to 
50%. Therefore, the median survival can be obtained for patients who are the imaging biomarker + (red); however, not for patients who are the 
imaging biomarker – (green). To determine the median survival time, draw a horizontal line at 50% survival, see where it crosses the curve, and 
look down at the x-axis to read off the time. The median survival time is 622 days for the group with the imaging biomarker (red). The survival 
of the two groups can be compared in several different ways. The log-rank test and the Cox proportional hazards regression are commonly used 
to compare the survival curves as a whole across the entire follow-up time. Patients without the imaging biomarker (green) shows significantly 
better survival according to both methods (p = 0.007 and p = 0.011, respectively). The Cox proportional hazards regression calculates HR. Hazard 
has the meaning of the slope of a survival curve, which is the rate of developing events in a time period, and the HR (i.e., the ratio of hazards 
of two survival curves) estimated by the Cox regression is essentially a relative risk. The HR of 2.98 indicates that the risk of death is 2.98 times 
greater in the patients with the imaging biomarker (red) compared to those without the imaging biomarker (green, the reference category). If 
one wants to compare the survival probability at a specific follow-up time, for example, at 1 year (90.4% vs. 73.1%), the z-test is commonly 
used (p = 0.075). HR = hazard ratio
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accompanied by references when available is helpful [23-
32]. Some examples are shown below.

• “�the earliest signs of HCC progression (LTP, intrahepatic 
distant recurrence, gross vascular invasion, or 
extrahepatic distant metastasis) as determined by CT or 
MR imaging using the modified RECIST criteria, or death 
from any cause (22, 23)”[23]

• “�major adverse cardiovascular event (MACE) defined as 
cardiac death, acute myocardial infarction (AMI), CAD 
requiring coronary revascularization, or stroke/transient 
ischemic attack (TIA)” [25]

Mistake 2. Reporting a Comparison between Patients 
with and without Events to Explore Factors associated 
with Survival

This approach [29,33-42] may sound reasonable at a 
glance but is generally invalid. This analysis is logical only 
when the follow-up time is fixed and specified for the 
grouping of patients (e.g., patients developing events by 
6 months after treatment vs. patients free of events until 
6 months) and all patients have completely been followed 
until the specified time point (e.g., all have been followed 
until 6 months without dropouts unless they had events) 
[36-38,43]. Complete follow-up is difficult to achieve in 
clinical research, especially in retrospective studies or 
studies that involve long periods of follow-up. Patients 
who dropped out before the specified time cannot be 
categorized into either events or no events as there is no 
way to know if they would have developed events if they 
had been followed further. Some investigators then exclude 
dropouts for the analysis [39]; however, such exclusion is 
inappropriate and may cause selection biases. Even if the 
two conditions are met, other issues remain, such as 1) 
whether events do not occur after the specified follow-up 
time, 2) if events can still occur after the specified time, is 
it okay to ignore them by categorizing them into no events 
group, and 3) why does the specific time matter instead 
of other follow-up time points. Unless there are explicit 
sound explanations for these questions, the analysis will be 
unsatisfactory.

Accordingly, this analytic approach is more reasonable 
if a study is looking for events that occur within relatively 
short periods. For example, one study [36] divided patients 
with glioblastoma multiforme into those who had early 
progression after treatment (i.e., progression before 6 
months) and those who did not because the study had a 

specific purpose of finding factors associated with the early 
progression after the treatment. All study patients could 
be followed completely without dropouts as the follow-up 
period was relatively short.

For the same reason, case-control design, i.e., separate 
collection of patients who had events and those who did 
not, is generally inappropriate for survival analysis. As an 
exception, case-control design combined with some other 
specialized methodological features may be used for a huge 
epidemiological study to determine factors associated with 
the occurrence of rare events [44-46].

Mistake 3. Inappropriately Reporting the Mean Survival 
Time

The mean survival time, reported in some studies [39,47], 
can be misleading. The mean survival time in the sense 
of the mean length of time a subject can be expected to 
survive cannot be calculated until the survival time for 
every patient is known as every patient has died. We simply 
do not know the survival time of a patient who is not dead 
yet. Clinical studies where all study patients had events are 
rare and, therefore, the mean survival time is generally not 
obtainable. The “mean” survival times reported in clinical 
research studies are typically the area under the survival 
curve between time zero to the finish of study observation 
that statistical software programs calculate [48] or, maybe, 
merely the mean of the follow-up times, both of which 
should not be mistaken for the mean length of time a 
subject can be expected to survive. The authors should first 
consider if such “mean” value is truly informative in the 
study or redundant only creating confusion. Generally, it is 
more appropriate to present the median survival time as a 
statistic that represents the survival lengths of the study 
patients. The median survival time is the length of time 
that half of the patients have developed events (Fig. 1). If 
fewer than half the subjects have developed events by the 
end of the study, the median survival cannot be determined, 
either.

Mistake 4. Not Clarifying the Unit Amount When 
Reporting Hazard Ratio for a Continuous Variable

With a continuous variable, the hazard ratio (HR) 
indicates the change in the risk of events if the parameter 
rises by one-unit amount. Therefore, it is important to state 
in the report what was considered one-unit amount. For 
example, one study reported an HR of 1.34 for systolic right 
ventricular mass index measured on cardiac MRI for the 
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development of major adverse cardiac and cerebrovascular 
events [33]. The systolic right ventricular mass index 
was a continuous variable measured in g/m2. The study 
specifically describes that the HR of 1.34 is per increase of 
5 g/m2. Without the explanation, one might inadvertently 
misinterpret it as an HR of 1.34 for a 1 g/m2 increase in the 
index value, which would erroneously make the HR for a  
5 g/m2 increase 4.32 (= 1.345).

Mistake 5. Making Imprecise Reference to the p Values 
from the Log-Rank Test and the Cox Regression

Some studies cite p values from the log-rank test or 
the Cox proportional hazards regression alongside when 
contrasting survival probabilities at a particular follow-
up time or the median survival times between groups 
[23,47,49-53]. Some examples are shown below:

• “�The 5-year OS rate was 100% (no event) for mrTRG 
1, 92.7% for mrTRG 2, 89.6% for mrTRG 3, 80.1% for 
mrTRG 4, and 40.0% for mrTRG 5 (p = 0.024 by Cox 
proportional hazards regression)” [47]

• “�The 2-year LTP-free survival rates of patients in the 
DSM-RFA and SSM-RFA groups were 90.0% and 94.4%, 
respectively (p = 0.331 by log-rank test), and the 2-year 
recurrence-free survival rates were 54.9% and 75.7%, 
respectively (p = 0.265 by log-rank test)” [49]

• “�The median overall survival time in the validation set 
were 137.5 months, 76.1 months, and 44.0 months for 
low-, intermediate-, and high-risk groups, respectively 
(p < 0.001 by log-rank test)” [23]

Caution is needed in the reporting to prevent it from 
being interpreted as if the statistical analyses specifically 
refer to the comparison of survival probabilities at a 
particular time or the comparison of the median survival 
times because the log-rank test and the Cox proportional 
hazards regression compare the survival curves as a whole 
for the entire follow-up time (Fig. 1). 

If the investigators want to specifically compare 
the survival probability at a specific time, the z-test is 
commonly used (Fig. 1) [54]. Methods to specifically 
compare median survival times have also been proposed 
[55], if the comparison is particularly needed for reasons 
such as crossing survival curves. However, such statistical 
testing is rarely used in clinical research studies. Instead, 
presenting the median survival with its 95% confidence 
interval would be clear enough as shown below.

• “�The multiple Cox’s proportional hazard analysis showed 
that the location of distal end of biliary stent was the 
only independent predictor of biliary stent patency 
(hazard ratio, 3.771; 95% CI, 1.157–12.283). The 
median biliary stent patency rate was significantly 
longer in patients in whom the distal end of biliary 
stent was beyond the distal end of the duodenal stent 
(median, 327 days; 95% CI, 249–405 days), compared 
with cases in which the distal end of the biliary stent 
was within the duodenal stent (median, 170 days; 95% 
CI, 115–225 days)” [56]

Mistake 6: Multivariable Cox Regression Followed  
by Univariable Log-Rank Test

The Cox proportional hazards regression applies regression 
methodology to the analysis of survival data. It has an 
advantage over the log-rank test, which is a univariable 
analysis, that it can compare the survival between groups 
after adjusting for other variables, i.e., multivariable 
analysis. The multivariable Cox regression analysis is 
typically used to further interrogate the variables that are 
identified as significant at univariable analyses which can 
be the univariable Cox regression or the log-rank test [57]. 
Therefore, the results from the multivariable Cox regression 
are considered more conclusive than the results from 
the univariable analysis. The HR from multivariable Cox 
regression is referred to as adjusted HR to distinguish it 
from unadjusted (or crude) HR from the univariable analysis. 
Some investigators perform a multivariable Cox regression 
to identify a factor associated with survival. They, then 
report crude Kaplan–Meier survival curves segregated by 
the factor identified and additionally compare them using 
the log-rank test [29,35,58]. This reporting may deliver 
an incorrect message as if the crude Kaplan–Meier curves 
and the log-rank test provide more ultimate results. If one 
wants to show the Kaplan–Meier curves regarding a risk 
factor identified by multivariable Cox regression, adjusted 
Kaplan–Meier curves can be presented accompanied by 
adjusted HR [59-61].

CONCLUSION

Paying attention to avoid the mistakes listed above 
would help make the research report more accurate and 
transparent. Referring to published papers that report 
survival analysis relatively adequately [26,56,62-67] would 
also be helpful.
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