DOI QR코드

DOI QR Code

Effects of temperature and water management in rice fields on larval growth of Pantala flavescens (Odonata: Libellulidae)

  • Received : 2021.11.24
  • Accepted : 2021.12.14
  • Published : 2021.12.31

Abstract

Pantala flavescens is a dominant Odonata species in the rice fields in Korea. To determine the effects of different temperatures on its larval growth and emergence, field and laboratory experiments were conducted. Larval growth was also monitored in mono-cropping and double-cropping rice fields. The growth of larvae was monitored every week by measuring the head width. In the field experiment, no difference was found in larval growth and emergence between the control temperature and +1.9℃ of the control temperature. The larval growth was greater at 23℃ than at 20℃ laboratory temperatures, and no emergence was recorded at either temperature after eight weeks of monitoring. There was a quadratic relationship between larval growth and temperature in an incubator at five temperature regimes of 15, 20, 25, 30, and 35℃. Midseason water drainage caused the extinction of the existing individuals and newly hatched larvae dominated after re-watering in the rice fields. Larval size was greater in double-cropping fields than in mono-cropping fields in late July but the tendency was reversed in early August. The results of this study suggest that temperature warming will directly promote the larval growth of P. flavescens and indirectly influence seasonal growth via changes in water management in rice fields.

Keywords

Acknowledgement

This study was carried out with the support of "Research Program for Agricultural Science & Technology Development (Project No. PJ01507301), National Institute of Agricultural Sciences, Rural Development Administration, Republic of Korea".

References

  1. Acquah-Lamptey D and R Brandl. 2018. Effect of dragonfly (Bradinopyga strachani Kirby) on the density of mosquito larvae in a field experiment using mesocosms. Web Ecol. 18:81-89. https://doi.org/10.5194/we-18-81-2018
  2. Anderson RC. 2009. Do dragonflies migrate across the western Indian ocean? J. Trop. Ecol. 25:347-358. https://doi.org/10.1017/S0266467409006087
  3. Angilletta MJ, PH Niewiarowski and CA Navas. 2002. The evolution of thermal physiology in ectotherms. J. Therm. Biol. 27: 249-268. https://doi.org/10.1016/S0306-4565(01)00094-8
  4. Corbet PS. 2002. Stadia and growth ratios of Odonata: a review. Int. J. Odonatol. 5:45-73. https://doi.org/10.1080/13887890.2002.9748176
  5. Corbet PS.1999. Dragonflies: Behaviour and Ecology of Odonata. Harley Books. Colchester, UK. p. 829.
  6. Dell AI, S Pawar and VM Savage. 2011. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl. Acad. Sci. U.S.A. 108:10591-10596. https://doi.org/10.1073/pnas.1015178108
  7. Dixon AFG, A Honek, P Keil, MAA Kotela, AL Sizling and V Jarosik. 2009. Relationship between the minimum and maximum temperature thresholds for development in insects. Funct. Ecol. 23:257-264. https://doi.org/10.1111/j.1365-2435.2008.01489.x
  8. Doi H. 2008. Delayed phenological timing of dragonfly emergence in Japan over five decades. Biol. Lett. 4:388-391. https://doi.org/10.1098/rsbl.2008.0234
  9. Elith J and JR Leathwick. 2009. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40:677-697. https://doi.org/10.1146/annurev.ecolsys.110308.120159
  10. Forest J and AJ Miller-Rushing. 2010. Toward a synthetic understanding of the role of phenology in the ecology and evolution. Philos. Trans. R. Soc. B-Biol. Sci. 365:3101-3112. https://doi.org/10.1098/rstb.2010.0145
  11. Heiss JS, GL Harp and MV Meisch. 1986. Aquatic Coleoptera associated with Arkansas rice, with observations on the effects of Carbofuran, Molinate, predatory fish and late-planting. Southwest. Nat. 31:521-525. https://doi.org/10.2307/3671706
  12. Hobson KA, RC Anderson, DX Soto and LI Wassenaar. 2012. Isotopic evidence that dragonflies (Pantala flavescence) migrating through the Maldives come from the northern Indian Subcontinent. PLoS One 7:e52594.
  13. Hu X, Y Huang, W Sun and L Yu. 2017. Shifts in cultivar and planting date have regulated rice growth duration under climate warming in China since the early 1980s. Agi. For. Meteorol. 247:34-41. https://doi.org/10.1016/j.agrformet.2017.07.014
  14. Ichikawa Y, T Yokoi and M Watanabe. 2016. Thermal factors affecting egg development in the wandering glider dragonfly, Pantala flavescens (Odonata: Lebellulidae). App. Entomol. Zool. 52:89-95. https://doi.org/10.1007/s13355-016-0457-9
  15. Inoue K and K Tani. 2010. All about Red Dragonflies. Tombow Publishing. Osaka, Japan.
  16. IPCC. 2013. Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of IPCC. Cambridge University Press. Cambridge, UK.
  17. Jeon S, K Kim, SG Lee, YH Lee, SK Park, WS Kang, B Park and K Kim. 2019. Temperature-dependent developmental models and fertility life table of the potato aphid Macrosiphum euphorbiae Thomas on eggplant. Korean J. Environ. Biol. 37:568-578. https://doi.org/10.11626/KJEB.2019.37.4.568
  18. Krishnaraj R and G Pritchard. 1995. The influence of larval size, temperature, and components of the functional response to prey density on growth rates of the dragonflies Lestes disjunctus and Coenagrion resolutum(Insecta: Odonata). Can. J. Zool. 73:1672-1680. https://doi.org/10.1139/z95-199
  19. Lee H, Y Kim and I Park. 2013. Calculation of sample size in clinical trials. Clin. Shoulder Elbow 16:53-57. https://doi.org/10.5397/CiSE.2013.16.1.53
  20. Mandal SK, A Ghosh, I Bhattacharjee and G Chandra. 2008. Biocontrol efficiency of odonate nymphs against larvae of mosquito, Culex quinquefasciatus Say. Acta Trop. 106:109-114. https://doi.org/10.1016/j.actatropica.2008.02.002
  21. May ML. 2013. A critical overview of progress in the studies of migration of dragonflies (Odonata: Anisoptera), with emphasis on North America. J. Insect Conserv. 17:1-15. https://doi.org/10.1007/s10841-012-9540-x
  22. McCauley SJ, JI Hammond, DN Frances and KE Mabry. 2015. Effects of experimental warming on survival, phenology and morphology of an aquatic insect (Odonata). Ecol. Entomol. 40:211-220. https://doi.org/10.1111/een.12175
  23. Neal TM and WH Whitcomb. 1972. Odonata in the Florida soybean agroecosystem. Fla. Entomol. 55:107-114. https://doi.org/10.2307/3493347
  24. Park J, Y Lee, D Kim and S Shin. 2020. Effects of temperature and salinity on egg development and larval settlement of an invasive ascidian species, Herdmania momus (Savigny, 1816). Korean J. Environ. Biol. 38:625-633. https://doi.org/10.11626/KJEB.2020.38.4.625
  25. Parmesan C. 2006. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37:637-669. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100
  26. Pritchard G, LD Harder, A Kortello and R Krishnaraj. 2000. The response of larval growth rate to temperature in three species of coenagrionid dragonflies with some comments on Lestes disjunctus (Odonata: Coenagrionidae). Int. J. Odonatol. 3:105-110. https://doi.org/10.1080/13887890.2000.9748141
  27. R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria.
  28. Rebaudo F and B Regnier. 2021. devRate: Quantify the relationship between development rate and temperature in ectotherms. R package version 0.2.1.
  29. Richards CS and MH Villet. 2008. Factors affecting accuracy and precision of thermal summation models of insect development used to estimate post-mortem intervals. Int. J. Legal Med. 122:401-408. https://doi.org/10.1007/s00414-008-0243-5
  30. Richter O, F Suhling, O Muller and D Kern 2008. A model to predict dragonfly emergence pattern under climate change scenarios. Freshw. Biol. 53:1868-1880. https://doi.org/10.1111/j.1365-2427.2008.02012.x
  31. Russell RW, ML May, KL Soltesz and JW Fitzpatrick. 1998. Massive swarm migration of dragonflies (Odonata) in eastern North America. Am. Midl. Nat. 140:325-342. https://doi.org/10.1674/0003-0031(1998)140[0325:MSMODO]2.0.CO;2
  32. Salmah MRC, AZ Siregar, AA Hassan and Z Nasution. 2017. Dynamics of aquatic organisms in a rice field ecosystem: effects of seasons and cultivation phases on abundance and predator-prey interactions. Trop. Ecol. 58:177-191.
  33. Singh RK, RC Dhiman and SP Singh. 2003. Laboratory studies on the predatory potential of dragonfly nymphs on mosquito larvae. J. Commun. Dis. 35:96-101.
  34. Suh AN and MJ Samways. 2001. Development of a dragonfly awareness trail in an African botanical garden. Biol. Conserv. 100:345-353. https://doi.org/10.1016/S0006-3207(01)00038-6
  35. Suhling F, I Suhling and O Richter. 2015. Temperature response of growth of larval dragonflies - an overview. Int. J. Odonatol. 18:15-30. https://doi.org/10.1080/13887890.2015.1009392
  36. Suhling F, K Schenk, T Padeffke and A Martens. 2004. A field study of larval development in a dragonfly assemblage in African desert ponds (Odonata). Hydrobiologia 528:75-85. https://doi.org/10.1007/s10750-004-3047-8
  37. Trudgill DL, A Honek, D Li and NM Van Straalen. 2005. Thermal time- Concepts and utility. Ann. Appl. Biol. 146:1-14. https://doi.org/10.1111/j.1744-7348.2005.04088.x
  38. Van Doorslaer W and R Stoks. 2005. Growth rate plasticity to temperature in two damselfly species differing in latitude: contributions of behaviour and physiology. Oikos 111:599-605. https://doi.org/10.1111/j.1600-0706.2005.14335.x
  39. Yamazaki M, Y Aiba, Y Hamada, N Yasuda, N Kamimoto, S Mizuno, T Momii, S Yoshida and M Kimura. 2003. Changes in the community structure of aquatic organisms after midseason drainage in the floodwater of Japanese paddy fields. Soil Sci. Plant Nutr. 49:125-135. https://doi.org/10.1080/00380768.2003.10409987
  40. Yang X, Z Liu and F Chen. 2011. The possible effect of climate warming on northern limits of cropping system and crop yield in China. Agri. Sci. China 10:585-594. https://doi.org/10.1016/S1671-2927(11)60040-0
  41. Yasumatsu K, T Wongsiris, S Navavichit and C Tirawat. 1975. Approaches toward an integrated control of rice pests. Part I, Survey of natural enemies of important rice pests in Thailand. Plant Prot. Serv. Tech. Bull. 24:131-149.
  42. Yoon S, M Kim, J Eo and Y Song. 2020. Temperature-dependent development models and phenology of Hydrochara affinis. Korean J. Environ. Biol. 38:222-230. https://doi.org/10.11626/KJEB.2020.38.2.222