DOI QR코드

DOI QR Code

Rare Neurovascular Diseases in Korea: Classification and Related Genetic Variants

  • Yunsun Song (Division of Neurointervention Clinic, Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Boseong Kwon (Division of Neurointervention Clinic, Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Abdulrahman Hamed Al-Abdulwahhab (Department of Diagnostic and Interventional Radiology, Imam Abdulrahman Bin Faisal University, King Fahd Hospital of the University) ;
  • Yeo Kyoung Nam (Division of Neurointervention Clinic, Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Yura Ahn (Division of Neurointervention Clinic, Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • So Yeong Jeong (Division of Neurointervention Clinic, Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Eul-Ju Seo (Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Jong-Keuk Lee (Asan Institute of Life Sciences, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Dae Chul Suh (Division of Neurointervention Clinic, Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine)
  • Received : 2020.09.26
  • Accepted : 2021.01.23
  • Published : 2021.08.01

Abstract

Rare neurovascular diseases (RNVDs) have not been well-recognized in Korea. They involve the central nervous system and greatly affect the patients' lives. However, these diseases are difficult to diagnose and treat due to their rarity and incurability. We established a list of RNVDs by referring to the previous literature and databases worldwide to better understand the diseases and their current management status. We categorized 68 RNVDs based on their pathophysiology and clinical manifestations and estimated the prevalence of each disease in Korea. Recent advances in genetic, molecular, and developmental research have enabled further understanding of these RNVDs. Herein, we review each disease, while considering its classification based on updated pathologic mechanisms, and discuss the management status of RNVD in Korea.

Keywords

Acknowledgement

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2018R1A2B6003143).

References

  1. Richter T, Nestler-Parr S, Babela R, Khan ZM, Tesoro T, Molsen E, et al. Rare disease terminology and definitions- a systematic global review: report of the ISPOR rare disease special interest group. Value Health 2015;18:906-914 https://doi.org/10.1016/j.jval.2015.05.008
  2. Naghavi M, Abajobir AA, Abbafati C, Abbas KM, Abd-Allah F, Abera SF, et al. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017;390:1151-1210 https://doi.org/10.1016/S0140-6736(17)32152-9
  3. Krings T, Geibprasert S. Spinal dural arteriovenous fistulas. AJNR Am J Neuroradiol 2009;30:639-648 https://doi.org/10.3174/ajnr.A1485
  4. Vanakker OM, Hemelsoet D, De Paepe A. Hereditary connective tissue diseases in young adult stroke: a comprehensive synthesis. Stroke Res Treat 2011;2011:712903
  5. Vanaman MJ, Hervey-Jumper SL, Maher CO. Pediatric and inherited neurovascular diseases. Neurosurg Clin N Am 2010;21:427-441 https://doi.org/10.1016/j.nec.2010.03.001
  6. Barbosa M, Mahadevan J, Weon YC, Yoshida Y, Ozanne A, Rodesch G, et al. Dural sinus malformations (DSM) with giant lakes, in neonates and infants: review of 30 consecutive cases. Interv Neuroradiol 2003;9:407-424 https://doi.org/10.1177/159101990300900413
  7. Lasjaunias P, Rodesch G, Pruvost P, Laroche FG, Landrieu P. Treatment of vein of Galen aneurysmal malformation. J Neurosurg 1989;70:746-750 https://doi.org/10.3171/jns.1989.70.5.0746
  8. Guerrero BP, Pacheco CD, Saied A, Joshi K, Rodriguez C, Martinez-Galdamez M, et al. First human evaluation of endothelial healing after a pipeline flex embolization device with shield technology implanted in posterior circulation using optical coherence tomography. Neurointervention 2018;13:129-132 https://doi.org/10.5469/neuroint.2018.01032
  9. Liang B, Lesley WS, Robinson TM, Chen W, Benardete EA, Huang JH. Off-label application of Pipeline Embolization Device for intracranial aneurysms. Neurointervention 2019;14:116-124 https://doi.org/10.5469/neuroint.2019.00073
  10. McKusick VA. Mendelian inheritance in man and its online version, OMIM. Am J Hum Genet 2007;80:588-604 https://doi.org/10.1086/514346
  11. Griessenauer CJ, Farrell S, Sarkar A, Zand R, Abedi V, Holland N, et al. Genetic susceptibility to cerebrovascular disease: a systematic review. J Cereb Blood Flow Metab 2018;38:1853-1871 https://doi.org/10.1177/0271678X18797958
  12. ISSVA. ISSVA classification for vascular anomalies. Issva. org Web site. https://www.issva.org/classification. Accessed July 1, 2020
  13. Xu J, Shi GP. Vascular wall extracellular matrix proteins and vascular diseases. Biochim Biophys Acta 2014;1842:2106-2119 https://doi.org/10.1016/j.bbadis.2014.07.008
  14. Soun JE, Song JW, Romero JM, Schaefer PW. Central nervous system vasculopathies. Radiol Clin North Am 2019;57:1117-1131 https://doi.org/10.1016/j.rcl.2019.07.005
  15. Jackson IT, Carreno R, Potparic Z, Hussain K. Hemangiomas, vascular malformations, and lymphovenous malformations: classification and methods of treatment. Plast Reconstr Surg 1993;91:1216-1230 https://doi.org/10.1097/00006534-199306000-00006
  16. Morales-Valero SF, Bortolotti C, Sturiale C, Lanzino G. Are parenchymal AVMs congenital lesions? Neurosurg Focus 2014;37:E2
  17. Kim H, Marchuk DA, Pawlikowska L, Chen Y, Su H, Yang GY, et al. Genetic considerations relevant to intracranial hemorrhage and brain arteriovenous malformations. Acta Neurochir Suppl 2008;105:199-206 https://doi.org/10.1007/978-3-211-09469-3_38
  18. Goss JA, Huang AY, Smith E, Konczyk DJ, Smits PJ, Sudduth CL, et al. Somatic mutations in intracranial arteriovenous malformations. PLoS One 2020;14:e0226852
  19. Hong T, Yan Y, Li J, Radovanovic I, Ma X, Shao YW, et al. High prevalence of KRAS/BRAF somatic mutations in brain and spinal cord arteriovenous malformations. Brain 2018;142:23-34
  20. Couto JA, Huang AY, Konczyk DJ, Goss JA, Fishman SJ, Mulliken JB, et al. Somatic MAP2K1 mutations are associated with extracranial arteriovenous malformation. Am J Hum Genet 2017;100:546-554 https://doi.org/10.1016/j.ajhg.2017.01.018
  21. Komiyama M. Pathogenesis of brain arteriovenous malformations. Neurol Med Chir (Tokyo) 2016;56:317-325 https://doi.org/10.2176/nmc.ra.2016-0051
  22. Amyere M, Revencu N, Helaers R, Pairet E, Baselga E, Cordisco M, et al. Germline loss-of-function mutations in EPHB4 cause a second form of capillary malformation-arteriovenous malformation (CM-AVM2) deregulating RAS-MAPK signaling. Circulation 2017;136:1037-1048 https://doi.org/10.1161/CIRCULATIONAHA.116.026886
  23. Wooderchak-Donahue WL, Akay G, Whitehead K, Briggs E, Stevenson DA, O'Fallon B, et al. Phenotype of CM-AVM2 caused by variants in EPHB4: how much overlap with hereditary hemorrhagic telangiectasia (HHT)? Genet Med 2019;21:2007-2014 https://doi.org/10.1038/s41436-019-0443-z
  24. Robert F, Desroches-Castan A, Bailly S, Dupuis-Girod S, Feige JJ. Future treatments for hereditary hemorrhagic telangiectasia. Orphanet J Rare Dis 2020;15:4
  25. Kim D, Seo EJ, Song YS, Suh CH, Kim JW, Kim DJ, et al. Current status of clinical diagnosis and genetic analysis of hereditary hemorrhagic telangiectasia in South Korea: multicenter case series and a systematic review. Neurointervention 2019;14:91-98 https://doi.org/10.5469/neuroint.2019.00150
  26. Revencu N, Boon LM, Mulliken JB, Enjolras O, Cordisco MR, Burrows PE, et al. Parkes Weber syndrome, vein of Galen aneurysmal malformation, and other fast-flow vascular anomalies are caused by RASA1 mutations. Hum Mutat 2008;29:959-965 https://doi.org/10.1002/humu.20746
  27. Lasjaunias PL, Landrieu P, Rodesch G, Alvarez H, Ozanne A, Holmin S, et al. Cerebral proliferative angiopathy: clinical and angiographic description of an entity different from cerebral AVMs. Stroke 2008;39:878-885 https://doi.org/10.1161/STROKEAHA.107.493080
  28. Gupta A, Periakaruppan A. Intracranial dural arteriovenous fistulas: a review. Indian J Radiol Imaging 2009;19:43-48 https://doi.org/10.4103/0971-3026.45344
  29. Suh DC. Where did the dura mater come from? Neurointervention 2020;15:2-3 https://doi.org/10.5469/neuroint.2020.00045
  30. Tanaka M. Embryological consideration of dural AVFs in relation to the neural crest and the mesoderm. Neurointervention 2019;14:9-16 https://doi.org/10.5469/neuroint.2018.01095
  31. Bhattacharya JJ, Thammaroj J. Vein of galen malformations. J Neurol Neurosurg Psychiatry 2003;74 Suppl 1:i42-i44 https://doi.org/10.1136/jnnp.74.suppl_1.i42
  32. Kim DJ, Suh DC, Kim BM, Kim DI. Adjuvant coil assisted glue embolization of vein of Galen aneurysmal malformation in pediatric patients. Neurointervention 2018;13:41-47 https://doi.org/10.5469/neuroint.2018.13.1.41
  33. Vivanti A, Ozanne A, Grondin C, Saliou G, Quevarec L, Maurey H, et al. Loss of function mutations in EPHB4 are responsible for vein of Galen aneurysmal malformation. Brain 2018;141:979-988
  34. Duran D, Karschnia P, Gaillard JR, Karimy JK, Youngblood MW, DiLuna ML, et al. Human genetics and molecular mechanisms of vein of Galen malformation. J Neurosurg Pediatr 2018;21:367-374 https://doi.org/10.3171/2017.9.PEDS17365
  35. De Luca C, Bevilacqua E, Badr DA, Cannie MM, Sanchez TC, Segers V, et al. An ACVRL1 gene mutation presenting as vein of Galen malformation at prenatal diagnosis. Am J Med Genet A 2020;182:1255-1258 https://doi.org/10.1002/ajmg.a.61535
  36. Bhattacharya JJ, Luo CB, Suh DC, Alvarez H, Rodesch G, Lasjaunias P. Wyburn-Mason or Bonnet-Dechaume-Blanc as cerebrofacial arteriovenous metameric syndromes (CAMS) a new concept and a new classification. Interv Neuroradiol 2001;7:5-17 https://doi.org/10.1177/159101990100700101
  37. Couly G, Coltey P, Eichmann A, Le Douarin NM. The angiogenic potentials of the cephalic mesoderm and the origin of brain and head blood vessels. Mech Dev 1995;53:97-112 https://doi.org/10.1016/0925-4773(95)00428-9
  38. Bergwerff M, Verberne ME, DeRuiter MC, Poelmann RE, Gittenberger-de Groot AC. Neural crest cell contribution to the developing circulatory system: implications for vascular morphology? Circ Res 1998;82:221-231 https://doi.org/10.1161/01.RES.82.2.221
  39. Zafar A, Quadri SA, Farooqui M, Ikram A, Robinson M, Hart BL, et al. Familial cerebral cavernous malformations. Stroke 2019;50:1294-1301 https://doi.org/10.1161/STROKEAHA.118.022314
  40. Ahmad S. Efficacy of percutaneous sclerotherapy in low flow venous malformations-a single center series. Neurointervention 2019;14:53-60 https://doi.org/10.5469/neuroint.2019.00024
  41. De Maria L, De Sanctis P, Balakrishnan K, Tollefson M, Brinjikji W. Sclerotherapy for venous malformations of head and neck: systematic review and meta-analysis. Neurointervention 2020;15:4-17 https://doi.org/10.5469/neuroint.2019.00213
  42. Wouters V, Limaye N, Uebelhoer M, Irrthum A, Boon LM, Mulliken JB, et al. Hereditary cutaneomucosal venous malformations are caused by TIE2 mutations with widely variable hyper-phosphorylating effects. Eur J Hum Genet 2010;18:414-420 https://doi.org/10.1038/ejhg.2009.193
  43. Soblet J, Kangas J, Natynki M, Mendola A, Helaers R, Uebelhoer M, et al. Blue rubber bleb nevus (BRBN) syndrome is caused by somatic TEK (TIE2) mutations. J Invest Dermatol 2017;137:207-216 https://doi.org/10.1016/j.jid.2016.07.034
  44. Chung JI, Alvarez H, Lasjaunias P. Multifocal cerebral venous malformations and associated developmental venous anomalies in a case of blue rubber bleb nevus syndrome. Interv Neuroradiol 2003;9:169-176 https://doi.org/10.1177/159101990300900206
  45. Vahidnezhad H, Youssefian L, Uitto J. Klippel-Trenaunay syndrome belongs to the PIK3CA-related overgrowth spectrum (PROS). Exp Dermatol 2016;25:17-19 https://doi.org/10.1111/exd.12826
  46. Pavanello M, Melloni I, Antichi E, Severino M, Ravegnani M, Piatelli G, et al. Sinus pericranii: diagnosis and management in 21 pediatric patients. J Neurosurg Pediatr 2015;15:60-70 https://doi.org/10.3171/2014.9.PEDS13641
  47. Wagenseil JE, Mecham RP. Elastin in large artery stiffness and hypertension. J Cardiovasc Transl Res 2012;5:264-273 https://doi.org/10.1007/s12265-012-9349-8
  48. Pepin M, Schwarze U, Superti-Furga A, Byers PH. Clinical and genetic features of Ehlers-Danlos syndrome type IV, the vascular type. N Engl J Med 2000;342:673-680 https://doi.org/10.1056/NEJM200003093421001
  49. Ul Haque A, Moatasim A. Adult polycystic kidney disease: a disorder of connective tissue? Int J Clin Exp Pathol 2008;1:84-90
  50. Kuo IY, Chapman A. Intracranial aneurysms in ADPKD: how far have we come? Clin J Am Soc Nephrol 2019;14:1119-1121 https://doi.org/10.2215/CJN.07570719
  51. Gaberel T, Rochey A, di Palma C, Lucas F, Touze E, Emery E. Ruptured intracranial aneurysm in patients with osteogenesis imperfecta: 2 familial cases and a systematic review of the literature. Neurochirurgie 2016;62:317-320 https://doi.org/10.1016/j.neuchi.2016.07.004
  52. Forlino A, Marini JC. Osteogenesis imperfecta. Lancet 2016;387:1657-1671 https://doi.org/10.1016/S0140-6736(15)00728-X
  53. Robinson PN, Godfrey M. The molecular genetics of Marfan syndrome and related microfibrillopathies. J Med Genet 2000;37:9-25 https://doi.org/10.1136/jmg.37.1.9
  54. De Paepe A, Devereux RB, Dietz HC, Hennekam RC, Pyeritz RE. Revised diagnostic criteria for the Marfan syndrome. Am J Med Genet 1996;62:417-426 https://doi.org/10.1002/(SICI)1096-8628(19960424)62:4<417::AID-AJMG15>3.0.CO;2-R
  55. Wityk RJ, Zanferrari C, Oppenheimer S. Neurovascular complications of marfan syndrome: a retrospective, hospital-based study. Stroke 2002;33:680-684 https://doi.org/10.1161/hs0302.103816
  56. Maleszewski JJ, Miller DV, Lu J, Dietz HC, Halushka MK. Histopathologic findings in ascending aortas from individuals with Loeys-Dietz syndrome (LDS). Am J Surg Pathol 2009;33:194-201 https://doi.org/10.1097/PAS.0b013e31817f3661
  57. MacCarrick G, Black JH 3rd, Bowdin S, El-Hamamsy I, Frischmeyer-Guerrerio PA, Guerrerio AL, et al. Loeys-Dietz syndrome: a primer for diagnosis and management. Genet Med 2014;16:576-587 https://doi.org/10.1038/gim.2014.11
  58. Rodrigues VJ, Elsayed S, Loeys BL, Dietz HC, Yousem DM. Neuroradiologic manifestations of Loeys-Dietz syndrome type 1. AJNR Am J Neuroradiol 2009;30:1614-1619 https://doi.org/10.3174/ajnr.A1651
  59. Germain DP. Pseudoxanthoma elasticum. Orphanet J Rare Dis 2017;12:85
  60. Beyens A, Albuisson J, Boel A, Al-Essa M, Al-Manea W, Bonnet D, et al. Arterial tortuosity syndrome: 40 new families and literature review. Genet Med 2018;20:1236-1245 https://doi.org/10.1038/gim.2017.253
  61. Lee YC, Huang HY, Chang CJ, Cheng CH, Chen YT. Mitochondrial GLUT10 facilitates dehydroascorbic acid import and protects cells against oxidative stress: mechanistic insight into arterial tortuosity syndrome. Hum Mol Genet 2010;19:3721-3733 https://doi.org/10.1093/hmg/ddq286
  62. Morris CA. Genetic aspects of supravalvular aortic stenosis. Curr Opin Cardiol 1998;13:214-219
  63. Freeze SL, Landis BJ, Ware SM, Helm BM. Bicuspid aortic valve: a review with recommendations for genetic counseling. J Genet Couns 2016;25:1171-1178 https://doi.org/10.1007/s10897-016-0002-6
  64. Schievink WI, Raissi SS, Maya MM, Velebir A. Screening for intracranial aneurysms in patients with bicuspid aortic valve. Neurology 2010;74:1430-1433 https://doi.org/10.1212/WNL.0b013e3181dc1acf
  65. Cichowski K, Jacks T. NF1 tumor suppressor gene function: narrowing the GAP. Cell 2001;104:593-604 https://doi.org/10.1016/S0092-8674(01)00245-8
  66. Hamilton SJ, Friedman JM. Insights into the pathogenesis of neurofibromatosis 1 vasculopathy. Clin Genet 2000;58:341-344 https://doi.org/10.1034/j.1399-0004.2000.580501.x
  67. Bae HJ, Debette S. Commentary on the cervical artery dissection in stroke study trial. Stroke 2016;47:1413-1415 https://doi.org/10.1161/STROKEAHA.115.011516
  68. Debette S, Markus HS. The genetics of cervical artery dissection: a systematic review. Stroke 2009;40:e459-e466 https://doi.org/10.1161/STROKEAHA.108.534669
  69. Guo DC, Duan XY, Regalado ES, Mellor-Crummey L, Kwartler CS, Kim D, et al. Loss-of-function mutations in YY1AP1 lead to grange syndrome and a fibromuscular dysplasia-like vascular disease. Am J Hum Genet 2017;100:21-30 https://doi.org/10.1016/j.ajhg.2016.11.008
  70. Shivapour DM, Erwin P, Kim ESh. Epidemiology of fibromuscular dysplasia: a review of the literature. Vasc Med 2016;21:376-381 https://doi.org/10.1177/1358863X16637913
  71. Yang X, Li J, Fang Y, Zhang Z, Jin D, Chen X, et al. Rho guanine nucleotide exchange factor ARHGEF17 is a risk gene for intracranial aneurysms. Circ Genom Precis Med 2018;11:e002099
  72. Bourcier R, Le Scouarnec S, Bonnaud S, Karakachoff M, Bourcereau E, Heurtebise-Chretien S, et al. Rare coding variants in ANGPTL6 are associated with familial forms of intracranial aneurysm. Am J Hum Genet 2018;102:133-141 https://doi.org/10.1016/j.ajhg.2017.12.006
  73. Zhou S, Ambalavanan A, Rochefort D, Xie P, Bourassa CV, Hince P, et al. RNF213 is associated with intracranial aneurysms in the French-Canadian population. Am J Hum Genet 2016;99:1072-1085 https://doi.org/10.1016/j.ajhg.2016.09.001
  74. Santiago-Sim T, Fang X, Hennessy ML, Nalbach SV, DePalma SR, Lee MS, et al. THSD1 (Thrombospondin Type 1 Domain Containing Protein 1) mutation in the pathogenesis of intracranial aneurysm and subarachnoid hemorrhage. Stroke 2016;47:3005-3013 https://doi.org/10.1161/STROKEAHA.116.014161
  75. Yan J, Hitomi T, Takenaka K, Kato M, Kobayashi H, Okuda H, et al. Genetic study of intracranial aneurysms. Stroke 2015;46:620-626 https://doi.org/10.1161/STROKEAHA.114.007286
  76. Biondi A, Jean B, Vivas E, Le Jean L, Boch AL, Chiras J, et al. Giant and large peripheral cerebral aneurysms: etiopathologic considerations, endovascular treatment, and long-term follow-up. AJNR Am J Neuroradiol 2006;27:1685-1692
  77. Pantoni L, Sarti C, Alafuzoff I, Jellinger K, Munoz DG, Ogata J, et al. Postmortem examination of vascular lesions in cognitive impairment: a survey among neuropathological services. Stroke 2006;37:1005-1009 https://doi.org/10.1161/01.STR.0000206445.97511.ae
  78. Steffensen LB, Rasmussen LM. A role for collagen type IV in cardiovascular disease? Am J Physiol Heart Circ Physiol 2018;315:H610-H625 https://doi.org/10.1152/ajpheart.00070.2018
  79. Alamowitch S, Plaisier E, Favrole P, Prost C, Chen Z, Van Agtmael T, et al. Cerebrovascular disease related to COL4A1 mutations in HANAC syndrome. Neurology 2009;73:1873-1882 https://doi.org/10.1212/WNL.0b013e3181c3fd12
  80. Lanfranconi S, Markus HS. COL4A1 mutations as a monogenic cause of cerebral small vessel disease: a systematic review. Stroke 2010;41:e513-e518 https://doi.org/10.1161/STROKEAHA.110.581918
  81. Coria F, Rubio I. Cerebral amyloid angiopathies. Neuropathol Appl Neurobiol 1996;22:216-227 https://doi.org/10.1111/j.1365-2990.1996.tb00897.x
  82. Jennette JC, Falk RJ. Small-vessel vasculitis. N Engl J Med 1997;337:1512-1523 https://doi.org/10.1056/NEJM199711203372106
  83. Fang J, Hirschi K. Molecular regulation of arteriovenous endothelial cell specification. F1000Res 2019;8:1208
  84. Sammons V, Davidson A, Tu J, Stoodley MA. Endothelial cells in the context of brain arteriovenous malformations. J Clin Neurosci 2011;18:165-170 https://doi.org/10.1016/j.jocn.2010.04.045
  85. Barbosa Do Prado L, Han C, Oh SP, Su H. Recent advances in basic research for brain arteriovenous malformation. Int J Mol Sci 2019;20:5324
  86. Frismantiene A, Philippova M, Erne P, Resink TJ. Smooth muscle cell-driven vascular diseases and molecular mechanisms of VSMC plasticity. Cell Signal 2018;52:48-64 https://doi.org/10.1016/j.cellsig.2018.08.019
  87. Bochaton-Piallat ML, Back M. Novel concepts for the role of smooth muscle cells in vascular disease: towards a new smooth muscle cell classification. Cardiovasc Res 2018;114:477-480 https://doi.org/10.1093/cvr/cvy031
  88. Sinha S, Santoro MM. New models to study vascular mural cell embryonic origin: implications in vascular diseases. Cardiovasc Res 2018;114:481-491 https://doi.org/10.1093/cvr/cvy005
  89. Le Douarin NM, Dupin E. The "beginnings" of the neural crest. Dev Biol 2018;444 Suppl 1:S3-S13 https://doi.org/10.1016/j.ydbio.2018.07.019
  90. Komiyama M. Cardio-cephalic neural crest syndrome: a novel hypothesis of vascular neurocristopathy. Interv Neuroradiol 2017;23:572-576 https://doi.org/10.1177/1591019917726093
  91. Nguengang Wakap S, Lambert DM, Olry A, Rodwell C, Gueydan C, Lanneau V, et al. Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database. Eur J Hum Genet 2020;28:165-173 https://doi.org/10.1038/s41431-019-0508-0
  92. Thomas JM, Surendran S, Abraham M, Rajavelu A, Kartha CC. Genetic and epigenetic mechanisms in the development of arteriovenous malformations in the brain. Clin Epigenetics 2016;8:78
  93. Di Monaco S, Georges A, Lengele JP, Vikkula M, Persu A. Genomics of fibromuscular dysplasia. Int J Mol Sci 2018;19:1526
  94. Wooderchak-Donahue WL, Johnson P, McDonald J, Blei F, Berenstein A, Sorscher M, et al. Expanding the clinical and molecular findings in RASA1 capillary malformation-arteriovenous malformation. Eur J Hum Genet 2018;26:1521-1536 https://doi.org/10.1038/s41431-018-0196-1
  95. Giau VV, Bagyinszky E, Youn YC, An SSA, Kim SY. Genetic factors of cerebral small vessel disease and their potential clinical outcome. Int J Mol Sci 2019;20:4298
  96. Brinjikji W, Mark IT, Silvera VM, Guerin JB. Cervicofacial venous malformations are associated with intracranial developmental venous anomalies and dural venous sinus abnormalities. AJNR Am J Neuroradiol 2020;41:1209-1214 https://doi.org/10.3174/ajnr.A6617
  97. Posey JE. Genome sequencing and implications for rare disorders. Orphanet J Rare Dis 2019;14:153
  98. Posey JE, O'Donnell-Luria AH, Chong JX, Harel T, Jhangiani SN, Coban Akdemir ZH, et al. Insights into genetics, human biology and disease gleaned from family based genomic studies. Genet Med 2019;21:798-812 https://doi.org/10.1038/s41436-018-0408-7
  99. Vahidnezhad H, Youssefian L, Saeidian AH, Touati A, Pajouhanfar S, Baghdadi T, et al. Mutations in PLOD3, encoding lysyl hydroxylase 3, cause a complex connective tissue disorder including recessive dystrophic epidermolysis bullosa-like blistering phenotype with abnormal anchoring fibrils and type VII collagen deficiency. Matrix Biol 2019;81:91-106 https://doi.org/10.1016/j.matbio.2018.11.006
  100. Fernandez-Marmiesse A, Gouveia S, Couce ML. NGS technologies as a turning point in rare disease research, diagnosis and treatment. Curr Med Chem 2018;25:404-432 https://doi.org/10.2174/0929867324666170718101946
  101. Fereydooni A, Dardik A, Nassiri N. Molecular changes associated with vascular malformations. J Vasc Surg 2019;70:314-326.e1 https://doi.org/10.1016/j.jvs.2018.12.033
  102. Krings T, Geibprasert S, Terbrugge K. Classification and endovascular management of pediatric cerebral vascular malformations. Neurosurg Clin N Am 2010;21:463-482 https://doi.org/10.1016/j.nec.2010.03.010
  103. Greene AK, Goss JA. Vascular anomalies: from a clinicohistologic to a genetic framework. Plast Reconstr Surg 2018;141:709e-717e https://doi.org/10.1097/PRS.0000000000004294
  104. Lee YJ. Advanced neuroimaging techniques for evaluating pediatric epilepsy. Clin Exp Pediatr 2020;63:88-95 https://doi.org/10.3345/kjp.2019.00871
  105. Griauzde J, Srinivasan A. Advanced neuroimaging techniques: basic principles and clinical applications. J Neuroophthalmol 2018;38:101-114 https://doi.org/10.1097/WNO.0000000000000539
  106. Suh CH, Jung SC, Kim B, Cho SJ, Woo DC, Oh WY, et al. Neuroimaging in randomized, multi-center clinical trials of endovascular treatment for acute ischemic stroke: a systematic review. Korean J Radiol 2020;21:42-57 https://doi.org/10.3348/kjr.2019.0354
  107. Hodel J, Leclerc X, Kalsoum E, Zuber M, Tamazyan R, Benadjaoud MA, et al. Intracranial arteriovenous shunting: detection with arterial spin-labeling and susceptibility-weighted imaging combined. AJNR Am J Neuroradiol 2017;38:71-76 https://doi.org/10.3174/ajnr.A4961
  108. Arai N, Akiyama T, Fujiwara K, Koike K, Takahashi S, Horiguchi T, et al. Silent MRA: arterial spin labeling magnetic resonant angiography with ultra-short time echo assessing cerebral arteriovenous malformation. Neuroradiology 2020;62:455-461 https://doi.org/10.1007/s00234-019-02345-3
  109. Grossberg JA, Howard BM, Saindane AM. The use of contrast-enhanced, time-resolved magnetic resonance angiography in cerebrovascular pathology. Neurosurg Focus 2019;47:E3
  110. Blair GW, Hernandez MV, Thrippleton MJ, Doubal FN, Wardlaw JM. Advanced neuroimaging of cerebral small vessel disease. Curr Treat Options Cardiovasc Med 2017;19:56