Acknowledgement
This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2018R1A2B6003143).
References
- Richter T, Nestler-Parr S, Babela R, Khan ZM, Tesoro T, Molsen E, et al. Rare disease terminology and definitions- a systematic global review: report of the ISPOR rare disease special interest group. Value Health 2015;18:906-914 https://doi.org/10.1016/j.jval.2015.05.008
- Naghavi M, Abajobir AA, Abbafati C, Abbas KM, Abd-Allah F, Abera SF, et al. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017;390:1151-1210 https://doi.org/10.1016/S0140-6736(17)32152-9
- Krings T, Geibprasert S. Spinal dural arteriovenous fistulas. AJNR Am J Neuroradiol 2009;30:639-648 https://doi.org/10.3174/ajnr.A1485
- Vanakker OM, Hemelsoet D, De Paepe A. Hereditary connective tissue diseases in young adult stroke: a comprehensive synthesis. Stroke Res Treat 2011;2011:712903
- Vanaman MJ, Hervey-Jumper SL, Maher CO. Pediatric and inherited neurovascular diseases. Neurosurg Clin N Am 2010;21:427-441 https://doi.org/10.1016/j.nec.2010.03.001
- Barbosa M, Mahadevan J, Weon YC, Yoshida Y, Ozanne A, Rodesch G, et al. Dural sinus malformations (DSM) with giant lakes, in neonates and infants: review of 30 consecutive cases. Interv Neuroradiol 2003;9:407-424 https://doi.org/10.1177/159101990300900413
- Lasjaunias P, Rodesch G, Pruvost P, Laroche FG, Landrieu P. Treatment of vein of Galen aneurysmal malformation. J Neurosurg 1989;70:746-750 https://doi.org/10.3171/jns.1989.70.5.0746
- Guerrero BP, Pacheco CD, Saied A, Joshi K, Rodriguez C, Martinez-Galdamez M, et al. First human evaluation of endothelial healing after a pipeline flex embolization device with shield technology implanted in posterior circulation using optical coherence tomography. Neurointervention 2018;13:129-132 https://doi.org/10.5469/neuroint.2018.01032
- Liang B, Lesley WS, Robinson TM, Chen W, Benardete EA, Huang JH. Off-label application of Pipeline Embolization Device for intracranial aneurysms. Neurointervention 2019;14:116-124 https://doi.org/10.5469/neuroint.2019.00073
- McKusick VA. Mendelian inheritance in man and its online version, OMIM. Am J Hum Genet 2007;80:588-604 https://doi.org/10.1086/514346
- Griessenauer CJ, Farrell S, Sarkar A, Zand R, Abedi V, Holland N, et al. Genetic susceptibility to cerebrovascular disease: a systematic review. J Cereb Blood Flow Metab 2018;38:1853-1871 https://doi.org/10.1177/0271678X18797958
- ISSVA. ISSVA classification for vascular anomalies. Issva. org Web site. https://www.issva.org/classification. Accessed July 1, 2020
- Xu J, Shi GP. Vascular wall extracellular matrix proteins and vascular diseases. Biochim Biophys Acta 2014;1842:2106-2119 https://doi.org/10.1016/j.bbadis.2014.07.008
- Soun JE, Song JW, Romero JM, Schaefer PW. Central nervous system vasculopathies. Radiol Clin North Am 2019;57:1117-1131 https://doi.org/10.1016/j.rcl.2019.07.005
- Jackson IT, Carreno R, Potparic Z, Hussain K. Hemangiomas, vascular malformations, and lymphovenous malformations: classification and methods of treatment. Plast Reconstr Surg 1993;91:1216-1230 https://doi.org/10.1097/00006534-199306000-00006
- Morales-Valero SF, Bortolotti C, Sturiale C, Lanzino G. Are parenchymal AVMs congenital lesions? Neurosurg Focus 2014;37:E2
- Kim H, Marchuk DA, Pawlikowska L, Chen Y, Su H, Yang GY, et al. Genetic considerations relevant to intracranial hemorrhage and brain arteriovenous malformations. Acta Neurochir Suppl 2008;105:199-206 https://doi.org/10.1007/978-3-211-09469-3_38
- Goss JA, Huang AY, Smith E, Konczyk DJ, Smits PJ, Sudduth CL, et al. Somatic mutations in intracranial arteriovenous malformations. PLoS One 2020;14:e0226852
- Hong T, Yan Y, Li J, Radovanovic I, Ma X, Shao YW, et al. High prevalence of KRAS/BRAF somatic mutations in brain and spinal cord arteriovenous malformations. Brain 2018;142:23-34
- Couto JA, Huang AY, Konczyk DJ, Goss JA, Fishman SJ, Mulliken JB, et al. Somatic MAP2K1 mutations are associated with extracranial arteriovenous malformation. Am J Hum Genet 2017;100:546-554 https://doi.org/10.1016/j.ajhg.2017.01.018
- Komiyama M. Pathogenesis of brain arteriovenous malformations. Neurol Med Chir (Tokyo) 2016;56:317-325 https://doi.org/10.2176/nmc.ra.2016-0051
- Amyere M, Revencu N, Helaers R, Pairet E, Baselga E, Cordisco M, et al. Germline loss-of-function mutations in EPHB4 cause a second form of capillary malformation-arteriovenous malformation (CM-AVM2) deregulating RAS-MAPK signaling. Circulation 2017;136:1037-1048 https://doi.org/10.1161/CIRCULATIONAHA.116.026886
- Wooderchak-Donahue WL, Akay G, Whitehead K, Briggs E, Stevenson DA, O'Fallon B, et al. Phenotype of CM-AVM2 caused by variants in EPHB4: how much overlap with hereditary hemorrhagic telangiectasia (HHT)? Genet Med 2019;21:2007-2014 https://doi.org/10.1038/s41436-019-0443-z
- Robert F, Desroches-Castan A, Bailly S, Dupuis-Girod S, Feige JJ. Future treatments for hereditary hemorrhagic telangiectasia. Orphanet J Rare Dis 2020;15:4
- Kim D, Seo EJ, Song YS, Suh CH, Kim JW, Kim DJ, et al. Current status of clinical diagnosis and genetic analysis of hereditary hemorrhagic telangiectasia in South Korea: multicenter case series and a systematic review. Neurointervention 2019;14:91-98 https://doi.org/10.5469/neuroint.2019.00150
- Revencu N, Boon LM, Mulliken JB, Enjolras O, Cordisco MR, Burrows PE, et al. Parkes Weber syndrome, vein of Galen aneurysmal malformation, and other fast-flow vascular anomalies are caused by RASA1 mutations. Hum Mutat 2008;29:959-965 https://doi.org/10.1002/humu.20746
- Lasjaunias PL, Landrieu P, Rodesch G, Alvarez H, Ozanne A, Holmin S, et al. Cerebral proliferative angiopathy: clinical and angiographic description of an entity different from cerebral AVMs. Stroke 2008;39:878-885 https://doi.org/10.1161/STROKEAHA.107.493080
- Gupta A, Periakaruppan A. Intracranial dural arteriovenous fistulas: a review. Indian J Radiol Imaging 2009;19:43-48 https://doi.org/10.4103/0971-3026.45344
- Suh DC. Where did the dura mater come from? Neurointervention 2020;15:2-3 https://doi.org/10.5469/neuroint.2020.00045
- Tanaka M. Embryological consideration of dural AVFs in relation to the neural crest and the mesoderm. Neurointervention 2019;14:9-16 https://doi.org/10.5469/neuroint.2018.01095
- Bhattacharya JJ, Thammaroj J. Vein of galen malformations. J Neurol Neurosurg Psychiatry 2003;74 Suppl 1:i42-i44 https://doi.org/10.1136/jnnp.74.suppl_1.i42
- Kim DJ, Suh DC, Kim BM, Kim DI. Adjuvant coil assisted glue embolization of vein of Galen aneurysmal malformation in pediatric patients. Neurointervention 2018;13:41-47 https://doi.org/10.5469/neuroint.2018.13.1.41
- Vivanti A, Ozanne A, Grondin C, Saliou G, Quevarec L, Maurey H, et al. Loss of function mutations in EPHB4 are responsible for vein of Galen aneurysmal malformation. Brain 2018;141:979-988
- Duran D, Karschnia P, Gaillard JR, Karimy JK, Youngblood MW, DiLuna ML, et al. Human genetics and molecular mechanisms of vein of Galen malformation. J Neurosurg Pediatr 2018;21:367-374 https://doi.org/10.3171/2017.9.PEDS17365
- De Luca C, Bevilacqua E, Badr DA, Cannie MM, Sanchez TC, Segers V, et al. An ACVRL1 gene mutation presenting as vein of Galen malformation at prenatal diagnosis. Am J Med Genet A 2020;182:1255-1258 https://doi.org/10.1002/ajmg.a.61535
- Bhattacharya JJ, Luo CB, Suh DC, Alvarez H, Rodesch G, Lasjaunias P. Wyburn-Mason or Bonnet-Dechaume-Blanc as cerebrofacial arteriovenous metameric syndromes (CAMS) a new concept and a new classification. Interv Neuroradiol 2001;7:5-17 https://doi.org/10.1177/159101990100700101
- Couly G, Coltey P, Eichmann A, Le Douarin NM. The angiogenic potentials of the cephalic mesoderm and the origin of brain and head blood vessels. Mech Dev 1995;53:97-112 https://doi.org/10.1016/0925-4773(95)00428-9
- Bergwerff M, Verberne ME, DeRuiter MC, Poelmann RE, Gittenberger-de Groot AC. Neural crest cell contribution to the developing circulatory system: implications for vascular morphology? Circ Res 1998;82:221-231 https://doi.org/10.1161/01.RES.82.2.221
- Zafar A, Quadri SA, Farooqui M, Ikram A, Robinson M, Hart BL, et al. Familial cerebral cavernous malformations. Stroke 2019;50:1294-1301 https://doi.org/10.1161/STROKEAHA.118.022314
- Ahmad S. Efficacy of percutaneous sclerotherapy in low flow venous malformations-a single center series. Neurointervention 2019;14:53-60 https://doi.org/10.5469/neuroint.2019.00024
- De Maria L, De Sanctis P, Balakrishnan K, Tollefson M, Brinjikji W. Sclerotherapy for venous malformations of head and neck: systematic review and meta-analysis. Neurointervention 2020;15:4-17 https://doi.org/10.5469/neuroint.2019.00213
- Wouters V, Limaye N, Uebelhoer M, Irrthum A, Boon LM, Mulliken JB, et al. Hereditary cutaneomucosal venous malformations are caused by TIE2 mutations with widely variable hyper-phosphorylating effects. Eur J Hum Genet 2010;18:414-420 https://doi.org/10.1038/ejhg.2009.193
- Soblet J, Kangas J, Natynki M, Mendola A, Helaers R, Uebelhoer M, et al. Blue rubber bleb nevus (BRBN) syndrome is caused by somatic TEK (TIE2) mutations. J Invest Dermatol 2017;137:207-216 https://doi.org/10.1016/j.jid.2016.07.034
- Chung JI, Alvarez H, Lasjaunias P. Multifocal cerebral venous malformations and associated developmental venous anomalies in a case of blue rubber bleb nevus syndrome. Interv Neuroradiol 2003;9:169-176 https://doi.org/10.1177/159101990300900206
- Vahidnezhad H, Youssefian L, Uitto J. Klippel-Trenaunay syndrome belongs to the PIK3CA-related overgrowth spectrum (PROS). Exp Dermatol 2016;25:17-19 https://doi.org/10.1111/exd.12826
- Pavanello M, Melloni I, Antichi E, Severino M, Ravegnani M, Piatelli G, et al. Sinus pericranii: diagnosis and management in 21 pediatric patients. J Neurosurg Pediatr 2015;15:60-70 https://doi.org/10.3171/2014.9.PEDS13641
- Wagenseil JE, Mecham RP. Elastin in large artery stiffness and hypertension. J Cardiovasc Transl Res 2012;5:264-273 https://doi.org/10.1007/s12265-012-9349-8
- Pepin M, Schwarze U, Superti-Furga A, Byers PH. Clinical and genetic features of Ehlers-Danlos syndrome type IV, the vascular type. N Engl J Med 2000;342:673-680 https://doi.org/10.1056/NEJM200003093421001
- Ul Haque A, Moatasim A. Adult polycystic kidney disease: a disorder of connective tissue? Int J Clin Exp Pathol 2008;1:84-90
- Kuo IY, Chapman A. Intracranial aneurysms in ADPKD: how far have we come? Clin J Am Soc Nephrol 2019;14:1119-1121 https://doi.org/10.2215/CJN.07570719
- Gaberel T, Rochey A, di Palma C, Lucas F, Touze E, Emery E. Ruptured intracranial aneurysm in patients with osteogenesis imperfecta: 2 familial cases and a systematic review of the literature. Neurochirurgie 2016;62:317-320 https://doi.org/10.1016/j.neuchi.2016.07.004
- Forlino A, Marini JC. Osteogenesis imperfecta. Lancet 2016;387:1657-1671 https://doi.org/10.1016/S0140-6736(15)00728-X
- Robinson PN, Godfrey M. The molecular genetics of Marfan syndrome and related microfibrillopathies. J Med Genet 2000;37:9-25 https://doi.org/10.1136/jmg.37.1.9
- De Paepe A, Devereux RB, Dietz HC, Hennekam RC, Pyeritz RE. Revised diagnostic criteria for the Marfan syndrome. Am J Med Genet 1996;62:417-426 https://doi.org/10.1002/(SICI)1096-8628(19960424)62:4<417::AID-AJMG15>3.0.CO;2-R
- Wityk RJ, Zanferrari C, Oppenheimer S. Neurovascular complications of marfan syndrome: a retrospective, hospital-based study. Stroke 2002;33:680-684 https://doi.org/10.1161/hs0302.103816
- Maleszewski JJ, Miller DV, Lu J, Dietz HC, Halushka MK. Histopathologic findings in ascending aortas from individuals with Loeys-Dietz syndrome (LDS). Am J Surg Pathol 2009;33:194-201 https://doi.org/10.1097/PAS.0b013e31817f3661
- MacCarrick G, Black JH 3rd, Bowdin S, El-Hamamsy I, Frischmeyer-Guerrerio PA, Guerrerio AL, et al. Loeys-Dietz syndrome: a primer for diagnosis and management. Genet Med 2014;16:576-587 https://doi.org/10.1038/gim.2014.11
- Rodrigues VJ, Elsayed S, Loeys BL, Dietz HC, Yousem DM. Neuroradiologic manifestations of Loeys-Dietz syndrome type 1. AJNR Am J Neuroradiol 2009;30:1614-1619 https://doi.org/10.3174/ajnr.A1651
- Germain DP. Pseudoxanthoma elasticum. Orphanet J Rare Dis 2017;12:85
- Beyens A, Albuisson J, Boel A, Al-Essa M, Al-Manea W, Bonnet D, et al. Arterial tortuosity syndrome: 40 new families and literature review. Genet Med 2018;20:1236-1245 https://doi.org/10.1038/gim.2017.253
- Lee YC, Huang HY, Chang CJ, Cheng CH, Chen YT. Mitochondrial GLUT10 facilitates dehydroascorbic acid import and protects cells against oxidative stress: mechanistic insight into arterial tortuosity syndrome. Hum Mol Genet 2010;19:3721-3733 https://doi.org/10.1093/hmg/ddq286
- Morris CA. Genetic aspects of supravalvular aortic stenosis. Curr Opin Cardiol 1998;13:214-219
- Freeze SL, Landis BJ, Ware SM, Helm BM. Bicuspid aortic valve: a review with recommendations for genetic counseling. J Genet Couns 2016;25:1171-1178 https://doi.org/10.1007/s10897-016-0002-6
- Schievink WI, Raissi SS, Maya MM, Velebir A. Screening for intracranial aneurysms in patients with bicuspid aortic valve. Neurology 2010;74:1430-1433 https://doi.org/10.1212/WNL.0b013e3181dc1acf
- Cichowski K, Jacks T. NF1 tumor suppressor gene function: narrowing the GAP. Cell 2001;104:593-604 https://doi.org/10.1016/S0092-8674(01)00245-8
- Hamilton SJ, Friedman JM. Insights into the pathogenesis of neurofibromatosis 1 vasculopathy. Clin Genet 2000;58:341-344 https://doi.org/10.1034/j.1399-0004.2000.580501.x
- Bae HJ, Debette S. Commentary on the cervical artery dissection in stroke study trial. Stroke 2016;47:1413-1415 https://doi.org/10.1161/STROKEAHA.115.011516
- Debette S, Markus HS. The genetics of cervical artery dissection: a systematic review. Stroke 2009;40:e459-e466 https://doi.org/10.1161/STROKEAHA.108.534669
- Guo DC, Duan XY, Regalado ES, Mellor-Crummey L, Kwartler CS, Kim D, et al. Loss-of-function mutations in YY1AP1 lead to grange syndrome and a fibromuscular dysplasia-like vascular disease. Am J Hum Genet 2017;100:21-30 https://doi.org/10.1016/j.ajhg.2016.11.008
- Shivapour DM, Erwin P, Kim ESh. Epidemiology of fibromuscular dysplasia: a review of the literature. Vasc Med 2016;21:376-381 https://doi.org/10.1177/1358863X16637913
- Yang X, Li J, Fang Y, Zhang Z, Jin D, Chen X, et al. Rho guanine nucleotide exchange factor ARHGEF17 is a risk gene for intracranial aneurysms. Circ Genom Precis Med 2018;11:e002099
- Bourcier R, Le Scouarnec S, Bonnaud S, Karakachoff M, Bourcereau E, Heurtebise-Chretien S, et al. Rare coding variants in ANGPTL6 are associated with familial forms of intracranial aneurysm. Am J Hum Genet 2018;102:133-141 https://doi.org/10.1016/j.ajhg.2017.12.006
- Zhou S, Ambalavanan A, Rochefort D, Xie P, Bourassa CV, Hince P, et al. RNF213 is associated with intracranial aneurysms in the French-Canadian population. Am J Hum Genet 2016;99:1072-1085 https://doi.org/10.1016/j.ajhg.2016.09.001
- Santiago-Sim T, Fang X, Hennessy ML, Nalbach SV, DePalma SR, Lee MS, et al. THSD1 (Thrombospondin Type 1 Domain Containing Protein 1) mutation in the pathogenesis of intracranial aneurysm and subarachnoid hemorrhage. Stroke 2016;47:3005-3013 https://doi.org/10.1161/STROKEAHA.116.014161
- Yan J, Hitomi T, Takenaka K, Kato M, Kobayashi H, Okuda H, et al. Genetic study of intracranial aneurysms. Stroke 2015;46:620-626 https://doi.org/10.1161/STROKEAHA.114.007286
- Biondi A, Jean B, Vivas E, Le Jean L, Boch AL, Chiras J, et al. Giant and large peripheral cerebral aneurysms: etiopathologic considerations, endovascular treatment, and long-term follow-up. AJNR Am J Neuroradiol 2006;27:1685-1692
- Pantoni L, Sarti C, Alafuzoff I, Jellinger K, Munoz DG, Ogata J, et al. Postmortem examination of vascular lesions in cognitive impairment: a survey among neuropathological services. Stroke 2006;37:1005-1009 https://doi.org/10.1161/01.STR.0000206445.97511.ae
- Steffensen LB, Rasmussen LM. A role for collagen type IV in cardiovascular disease? Am J Physiol Heart Circ Physiol 2018;315:H610-H625 https://doi.org/10.1152/ajpheart.00070.2018
- Alamowitch S, Plaisier E, Favrole P, Prost C, Chen Z, Van Agtmael T, et al. Cerebrovascular disease related to COL4A1 mutations in HANAC syndrome. Neurology 2009;73:1873-1882 https://doi.org/10.1212/WNL.0b013e3181c3fd12
- Lanfranconi S, Markus HS. COL4A1 mutations as a monogenic cause of cerebral small vessel disease: a systematic review. Stroke 2010;41:e513-e518 https://doi.org/10.1161/STROKEAHA.110.581918
- Coria F, Rubio I. Cerebral amyloid angiopathies. Neuropathol Appl Neurobiol 1996;22:216-227 https://doi.org/10.1111/j.1365-2990.1996.tb00897.x
- Jennette JC, Falk RJ. Small-vessel vasculitis. N Engl J Med 1997;337:1512-1523 https://doi.org/10.1056/NEJM199711203372106
- Fang J, Hirschi K. Molecular regulation of arteriovenous endothelial cell specification. F1000Res 2019;8:1208
- Sammons V, Davidson A, Tu J, Stoodley MA. Endothelial cells in the context of brain arteriovenous malformations. J Clin Neurosci 2011;18:165-170 https://doi.org/10.1016/j.jocn.2010.04.045
- Barbosa Do Prado L, Han C, Oh SP, Su H. Recent advances in basic research for brain arteriovenous malformation. Int J Mol Sci 2019;20:5324
- Frismantiene A, Philippova M, Erne P, Resink TJ. Smooth muscle cell-driven vascular diseases and molecular mechanisms of VSMC plasticity. Cell Signal 2018;52:48-64 https://doi.org/10.1016/j.cellsig.2018.08.019
- Bochaton-Piallat ML, Back M. Novel concepts for the role of smooth muscle cells in vascular disease: towards a new smooth muscle cell classification. Cardiovasc Res 2018;114:477-480 https://doi.org/10.1093/cvr/cvy031
- Sinha S, Santoro MM. New models to study vascular mural cell embryonic origin: implications in vascular diseases. Cardiovasc Res 2018;114:481-491 https://doi.org/10.1093/cvr/cvy005
- Le Douarin NM, Dupin E. The "beginnings" of the neural crest. Dev Biol 2018;444 Suppl 1:S3-S13 https://doi.org/10.1016/j.ydbio.2018.07.019
- Komiyama M. Cardio-cephalic neural crest syndrome: a novel hypothesis of vascular neurocristopathy. Interv Neuroradiol 2017;23:572-576 https://doi.org/10.1177/1591019917726093
- Nguengang Wakap S, Lambert DM, Olry A, Rodwell C, Gueydan C, Lanneau V, et al. Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database. Eur J Hum Genet 2020;28:165-173 https://doi.org/10.1038/s41431-019-0508-0
- Thomas JM, Surendran S, Abraham M, Rajavelu A, Kartha CC. Genetic and epigenetic mechanisms in the development of arteriovenous malformations in the brain. Clin Epigenetics 2016;8:78
- Di Monaco S, Georges A, Lengele JP, Vikkula M, Persu A. Genomics of fibromuscular dysplasia. Int J Mol Sci 2018;19:1526
- Wooderchak-Donahue WL, Johnson P, McDonald J, Blei F, Berenstein A, Sorscher M, et al. Expanding the clinical and molecular findings in RASA1 capillary malformation-arteriovenous malformation. Eur J Hum Genet 2018;26:1521-1536 https://doi.org/10.1038/s41431-018-0196-1
- Giau VV, Bagyinszky E, Youn YC, An SSA, Kim SY. Genetic factors of cerebral small vessel disease and their potential clinical outcome. Int J Mol Sci 2019;20:4298
- Brinjikji W, Mark IT, Silvera VM, Guerin JB. Cervicofacial venous malformations are associated with intracranial developmental venous anomalies and dural venous sinus abnormalities. AJNR Am J Neuroradiol 2020;41:1209-1214 https://doi.org/10.3174/ajnr.A6617
- Posey JE. Genome sequencing and implications for rare disorders. Orphanet J Rare Dis 2019;14:153
- Posey JE, O'Donnell-Luria AH, Chong JX, Harel T, Jhangiani SN, Coban Akdemir ZH, et al. Insights into genetics, human biology and disease gleaned from family based genomic studies. Genet Med 2019;21:798-812 https://doi.org/10.1038/s41436-018-0408-7
- Vahidnezhad H, Youssefian L, Saeidian AH, Touati A, Pajouhanfar S, Baghdadi T, et al. Mutations in PLOD3, encoding lysyl hydroxylase 3, cause a complex connective tissue disorder including recessive dystrophic epidermolysis bullosa-like blistering phenotype with abnormal anchoring fibrils and type VII collagen deficiency. Matrix Biol 2019;81:91-106 https://doi.org/10.1016/j.matbio.2018.11.006
- Fernandez-Marmiesse A, Gouveia S, Couce ML. NGS technologies as a turning point in rare disease research, diagnosis and treatment. Curr Med Chem 2018;25:404-432 https://doi.org/10.2174/0929867324666170718101946
- Fereydooni A, Dardik A, Nassiri N. Molecular changes associated with vascular malformations. J Vasc Surg 2019;70:314-326.e1 https://doi.org/10.1016/j.jvs.2018.12.033
- Krings T, Geibprasert S, Terbrugge K. Classification and endovascular management of pediatric cerebral vascular malformations. Neurosurg Clin N Am 2010;21:463-482 https://doi.org/10.1016/j.nec.2010.03.010
- Greene AK, Goss JA. Vascular anomalies: from a clinicohistologic to a genetic framework. Plast Reconstr Surg 2018;141:709e-717e https://doi.org/10.1097/PRS.0000000000004294
- Lee YJ. Advanced neuroimaging techniques for evaluating pediatric epilepsy. Clin Exp Pediatr 2020;63:88-95 https://doi.org/10.3345/kjp.2019.00871
- Griauzde J, Srinivasan A. Advanced neuroimaging techniques: basic principles and clinical applications. J Neuroophthalmol 2018;38:101-114 https://doi.org/10.1097/WNO.0000000000000539
- Suh CH, Jung SC, Kim B, Cho SJ, Woo DC, Oh WY, et al. Neuroimaging in randomized, multi-center clinical trials of endovascular treatment for acute ischemic stroke: a systematic review. Korean J Radiol 2020;21:42-57 https://doi.org/10.3348/kjr.2019.0354
- Hodel J, Leclerc X, Kalsoum E, Zuber M, Tamazyan R, Benadjaoud MA, et al. Intracranial arteriovenous shunting: detection with arterial spin-labeling and susceptibility-weighted imaging combined. AJNR Am J Neuroradiol 2017;38:71-76 https://doi.org/10.3174/ajnr.A4961
- Arai N, Akiyama T, Fujiwara K, Koike K, Takahashi S, Horiguchi T, et al. Silent MRA: arterial spin labeling magnetic resonant angiography with ultra-short time echo assessing cerebral arteriovenous malformation. Neuroradiology 2020;62:455-461 https://doi.org/10.1007/s00234-019-02345-3
- Grossberg JA, Howard BM, Saindane AM. The use of contrast-enhanced, time-resolved magnetic resonance angiography in cerebrovascular pathology. Neurosurg Focus 2019;47:E3
- Blair GW, Hernandez MV, Thrippleton MJ, Doubal FN, Wardlaw JM. Advanced neuroimaging of cerebral small vessel disease. Curr Treat Options Cardiovasc Med 2017;19:56