DOI QR코드

DOI QR Code

Primary Invasive Mucinous Adenocarcinoma of the Lung: Prognostic Value of CT Imaging Features Combined with Clinical Factors

  • Tingting Wang (Department of Radiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine) ;
  • Yang Yang (Department of Radiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine) ;
  • Xinyue Liu (Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine) ;
  • Jiajun Deng (Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine) ;
  • Junqi Wu (Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine) ;
  • Likun Hou (Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine) ;
  • Chunyan Wu (Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine) ;
  • Yunlang She (Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine) ;
  • Xiwen Sun (Department of Radiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine) ;
  • Dong Xie (Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine) ;
  • Chang Chen (Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine)
  • 투고 : 2020.04.13
  • 심사 : 2020.07.02
  • 발행 : 2021.04.01

초록

Objective: To investigate the association between CT imaging features and survival outcomes in patients with primary invasive mucinous adenocarcinoma (IMA). Materials and Methods: Preoperative CT image findings were consecutively evaluated in 317 patients with resected IMA from January 2011 to December 2015. The association between CT features and long-term survival were assessed by univariate analysis. The independent prognostic factors were identified by the multivariate Cox regression analyses. The survival comparison of IMA patients was investigated using the Kaplan-Meier method and propensity scores. Furthermore, the prognostic impact of CT features was assessed based on different imaging subtypes, and the results were adjusted using the Bonferroni method. Results: The median follow-up time was 52.8 months; the 5-year disease-free survival (DFS) and overall survival rates of resected IMAs were 68.5% and 77.6%, respectively. The univariate analyses of all IMA patients demonstrated that 15 CT imaging features, in addition to the clinicopathologic characteristics, significantly correlated with the recurrence or death of IMA patients. The multivariable analysis revealed that five of them, including imaging subtype (p = 0.002), spiculation (p < 0.001), tumor density (p = 0.008), air bronchogram (p < 0.001), emphysema (p < 0.001), and location (p = 0.029) were independent prognostic factors. The subgroup analysis demonstrated that pneumonic-type IMA had a significantly worse prognosis than solitary-type IMA. Moreover, for solitary-type IMAs, the most independent CT imaging biomarkers were air bronchogram and emphysema with an adjusted p value less than 0.05; for pneumonic-type IMA, the tumors with mixed consolidation and ground-glass opacity were associated with a longer DFS (adjusted p = 0.012). Conclusion: CT imaging features characteristic of IMA may provide prognostic information and individual risk assessment in addition to the recognized clinical predictors.

키워드

과제정보

The authors wish to thank the biostatistician, Prof. Zhang Aihong (Department of Medical Statistics, Tongji University School of Medicine, Shanghai, China), for the design and guidance of statistical analysis in this study.

참고문헌

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019;69:7-34 
  2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394-424 
  3. Lee HY, Lee SW, Lee KS, Jeong JY, Choi JY, Kwon OJ, et al. Role of CT and PET imaging in predicting tumor recurrence and survival in patients with lung adenocarcinoma: a comparison with the International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society Classification of Lung Adenocarcinoma. J Thorac Oncol 2015;10:1785-1794 
  4. Fan L, Fang M, Li Z, Tu W, Wang S, Chen W, et al. Radiomics signature: a biomarker for the preoperative discrimination of lung invasive adenocarcinoma manifesting as a ground-glass nodule. Eur Radiol 2019;29:889-897 
  5. Travis WD, Brambilla E, Noguchi M, Nicholson AG, Geisinger KR, Yatabe Y, et al. International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society International Multidisciplinary Classification of Lung Adenocarcinoma. J Thorac Oncol 2011;6:244-285 
  6. Shim HS, Kenudson M, Zheng Z, Liebers M, Cha YJ, Hoang Ho Q, et al. Unique genetic and survival characteristics of invasive mucinous adenocarcinoma of the lung. J Thorac Oncol 2015;10:1156-1162 
  7. Geles A, Gruber-Moesenbacher U, Quehenberger F, Manzl C, Al Effah M, Grygar E, et al. Pulmonary mucinous adenocarcinomas: architectural patterns in correlation with genetic changes, prognosis and survival. Virchows Arch 2015;467:675-686 
  8. Austin JH, Garg K, Aberle D, Yankelevitz D, Kuriyama K, Lee HJ, et al. Radiologic implications of the 2011 classification of adenocarcinoma of the lung. Radiology 2013;266:62-71 
  9. Lee HY, Cha MJ, Lee KS, Lee HY, Kwon OJ, Choi JY, et al. Prognosis in resected invasive mucinous adenocarcinomas of the lung: related factors and comparison with resected nonmucinous adenocarcinomas. J Thorac Oncol 2016;11:1064-1073 
  10. Nie K, Nie W, Zhang YX, Yu H. Comparing clinicopathological features and prognosis of primary pulmonary invasive mucinous adenocarcinoma based on computed tomography findings. Cancer Imaging 2019;19:47 
  11. Shimizu K, Okita R, Saisho S, Maeda A, Nojima Y, Nakata M. Clinicopathological and immunohistochemical features of lung invasive mucinous adenocarcinoma based on computed tomography findings. Onco Targets Ther 2017;10:153-163 
  12. Limkin EJ, Sun R, Dercle L, Zacharaki EI, Robert C, Reuze S, et al. Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology. Ann Oncol 2017;28:1191-1206 
  13. Miyamoto A, Kurosaki A, Fujii T, Kishi K, Homma S. HRCT features of surgically resected invasive mucinous adenocarcinoma associated with interstitial pneumonia. Respirology 2017;22:735-743 
  14. Watanabe H, Saito H, Yokose T, Sakuma Y, Murakami S, Kondo T, et al. Relation between thin-section computed tomography and clinical findings of mucinous adenocarcinoma. Ann Thorac Surg 2015;99:975-981 
  15. Lee HY, Lee KS, Han J, Kim BT, Cho YS, Shim YM, et al. Mucinous versus nonmucinous solitary pulmonary nodular bronchioloalveolar carcinoma: CT and FDG PET findings and pathologic comparisons. Lung Cancer 2009;65:170-175 
  16. Hsu CP, Chen CY, Hsu NY. Bronchioloalveolar carcinoma. J Thorac Cardiovasc Surg 1995;110:374-381 
  17. Travis WD, Brambilla E, Nicholson AG, Yatabe Y, Austin JHM, Beasley MB, et al. The 2015 World Health Organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol 2015;10:1243-1260 
  18. Goldstraw P, Chansky K, Crowley J, Rami-Porta R, Asamura H, Eberhardt WE, et al. The IASLC lung cancer staging project: proposals for revision of the TNM stage groupings in the forthcoming (eighth) edition of the TNM classification for lung cancer. J Thorac Oncol 2016;11:39-51 
  19. Liu Y, Kim J, Qu F, Liu S, Wang H, Balagurunathan Y, et al. CT features associated with epidermal growth factor receptor mutation status in patients with lung adenocarcinoma. Radiology 2016;280:271-280 
  20. Bland JM, Altman DG. Multiple significance tests: the bonferroni method. BMJ 1995;310:170 
  21. Boland JM, Maleszewski JJ, Wampfler JA, Voss JS, Kipp BR, Yang P, et al. Pulmonary invasive mucinous adenocarcinoma and mixed invasive mucinous/nonmucinous adenocarcinoma-a clinicopathological and molecular genetic study with survival analysis. Hum Pathol 2018;71:8-19 
  22. Detterbeck FC, Franklin WA, Nicholson AG, Girard N, Arenberg DA, Travis WD, et al. The IASLC lung cancer staging project: background data and proposed criteria to distinguish separate primary lung cancers from metastatic foci in patients with two lung tumors in the forthcoming eighth edition of the TNM classification for lung cancer. J Thorac Oncol 2016;11:651-665 
  23. Luo J, Wang R, Han B, Zhang J, Zhao H, Fang W, et al. Analysis of the clinicopathologic characteristics and prognostic of stage I invasive mucinous adenocarcinoma. J Cancer Res Clin Oncol 2016;142:1837-1845 
  24. Yoshizawa A, Sumiyoshi S, Sonobe M, Kobayashi M, Fujimoto M, Kawakami F, et al. Validation of the IASLC/ATS/ERS lung adenocarcinoma classification for prognosis and association with EGFR and KRAS gene mutations: analysis of 440 Japanese patients. J Thorac Oncol 2013;8:52-61 
  25. Yoshizawa A, Motoi N, Riely GJ, Sima CS, Gerald WL, Kris MG, et al. Impact of proposed IASLC/ATS/ERS classification of lung adenocarcinoma: prognostic subgroups and implications for further revision of staging based on analysis of 514 stage I cases. Mod Pathol 2011;24:653-664 
  26. Cai D, Li H, Wang R, Li Y, Pan Y, Hu H, et al. Comparison of clinical features, molecular alterations, and prognosis in morphological subgroups of lung invasive mucinous adenocarcinoma. Onco Targets Ther 2014;7:2127-2132 
  27. Akira M, Atagi S, Kawahara M, Iuchi K, Johkoh T. High-resolution CT findings of diffuse bronchioloalveolar carcinoma in 38 patients. AJR Am J Roentgenol 1999;173:1623-1629 
  28. Wong JS, Weisbrod GL, Chamberlain D, Herman SJ. Bronchioloalveolar carcinoma and the air bronchogram sign: a new pathologic explanation. J Thorac Imaging 1994;9:141-144