DOI QR코드

DOI QR Code

A Brief Review on Variables and Test Priorities of Photovoltaic Module Life Expectancy

  • Padi, Siva Parvathi (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Chowdhury, Sanchari (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Zahid, Muhammad Aleem (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Kim, Jaeun (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Cho, Eun-Chel (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Yi, Junsin (Department of Electrical and Computer Engineering, Sungkyunkwan University)
  • 투고 : 2021.02.26
  • 심사 : 2021.03.31
  • 발행 : 2021.06.30

초록

To endorse the reliability and durability of the solar photovoltaic (PV) device several tests were conducted before exposing to the outdoor field in a non-ideal condition. The PV module has high probability that intend to perform adequately for 30 years under operating conditions. To evaluate the long term performance of the PV module in diversified terrestrial conditions, one should use the outdoor performance data. However, no one wants to wait for 25 years to determine the module reliability. The accelerating stress tests performing in the laboratory by mimicking different field conditions are thus important to understand the performance of a PV module. In this review, we will discuss briefly about different accelerating stress types, levels and prioritization that are used to evaluate the PV module reliability and durability before using them in real field.

키워드

과제정보

This research was supported by grants from the New & Renewable Energy Technology Development Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) funded by the Korean Ministry of Trade, Industry and Energy (MOTIE) (Project No. 20203030010060 and 20193010014850).

참고문헌

  1. Jordan, D. C., Wohlgemuth, J. H., Kurtz, S. R., "Technology and climate trends in pv module degradation," 27th European Photovoltaic Solar Energy Conference and Exhibition (Frankfurt, Germany), 1053315 (2012).
  2. Herrmann, W., Bogdanski, N., Reil, F., Kohl, M., Weiss, K.-A., Assmus, M., Heck, M., "PV module degradation caused by thermomechanical stress: real impacts of outdoor weathering versus accelerated testing in the laboratory Reliability of Photovoltaic Cells, Modules, Components, and Systems III," 7773, editors: Dhere, N. G., Wohlgemuth, J. H. and Lynn, K. (SPIE), 77730I (2010).
  3. Nyarko, F. K. A., Takyi, G., Amalu, E. H., Adaramola, M. S., "Generating temperature cycle profile from in-situ climatic condition for accurate prediction of thermo-mechanical degradation of c-Si photovoltaic module," Eng. Sci. Technol. an Int. J., 22, 502-14 (2019). https://doi.org/10.1016/j.jestch.2018.12.007
  4. McMahon, T., Jorgensen, G., Hulstrom, a. R., King, D., Quintana, M., "Module 30 year life: What does it mean and is it predictable or achievable?," OSTI.GOV NCPV Progr. Rev. Meet. Denver, 16, 19 (2000).
  5. Kurtz, S., "Reliability and Durability of PV Modules Photovoltaic Solar Energy," (John Wiley & Sons, Ltd), 491-501 (2017).
  6. Ross, R., "FSA engineering & reliability development menthodscan they be applied today?," Intersolar (San Francisco, CA.) (2018).
  7. Jordan, D. C., Kurtz, S. R., "Photovoltaic Degradation Rates-an Analytical Review," Prog. Photovoltaics Res. Appl., 21, 12-29 (2013). https://doi.org/10.1002/pip.1182
  8. Wohlgemuth, J., "Tutorial/short course on reliability: PV cells, modules, and systems," IEEE Photovoltaic Specialists Conference (Seattle, WA) (2011).
  9. Wohlgemuth, J. H., Kurtz, S., "Reliability testing beyond qualification as a key component in photovoltaic's progress toward grid parity," IEEE International Reliability Physics Symposium Proceedings (Monterey, CA, USA), 5E.3.1-5E.3.6 (2011).
  10. Lin, G. J., Wang, L. J., Liu, J. Q., Xiong, W. P., Song, M. H., Wu, Z. H., "Accelerated aging tests of high concentration multijunction solar cells," Procedia Environmental Sciences (2011).
  11. Kawai, S., Tanahashi, T., Fukumoto, Y., Tamai, F., Masuda, A., Kondo, M., "Causes of Degradation Identified by the Extended Thermal Cycling Test on Commercially Available Crystalline Silicon Photovoltaic Modules," IEEE J. Photovoltaics, 7, 1511-1518 (2017). https://doi.org/10.1109/JPHOTOV.2017.2741102
  12. Tsanakas, J. A., Karoglou, M., Delegou, E. T., Botsaris, P. N., Bakolas, A., Moropoulou, A., "Assessment of the Performance and Defect Investigation of PV Modules after Accelerated Ageing Tests," Renew. Energy Power Qual. J., 1, 866-872 (2013). https://doi.org/10.24084/repqj11.472
  13. Mathiak, G., Althaus, J., Menzler, S., Lichtschlager, L., Herrmann, W., "PV Module Corrosion from ammonia and salt mist - Experimental study with full-size modules," 27th European Photovoltaic Solar Energy Conference and Exhibition, 3536-3540 (2012).
  14. Khan, F., Rezgui, B. D., Kim, J. H., "Reliability Study of c-Si PV Module Mounted on a Concrete Slab by Thermal Cycling Using Electroluminescence Scanning: Application in Future Solar Roadways," Materials (Basel), 13, 470 (2020). https://doi.org/10.3390/ma13020470
  15. Omazic, A., Oreski, G., Halwachs, M., Eder, G. C., Hirschl, C., Neumaier, L., Pinter, G., Erceg, M., "Relation between degradation of polymeric components in crystalline silicon PV module and climatic conditions: A literature review," Sol. Energy Mater. Sol. Cells, 192, 123-33 (2019). https://doi.org/10.1016/j.solmat.2018.12.027
  16. Oliveira, M. C. C. de., Diniz Cardoso, A. S. A., Viana, M. M., Lins, V. de F C., "The causes and effects of degradation of encapsulant ethylene vinyl acetate copolymer (EVA) in crystalline silicon photovoltaic modules: A review," Renew. Sustain. Energy Rev., 81, 2299-2317 (2018). https://doi.org/10.1016/j.rser.2017.06.039
  17. Gagliardi, M., Paggi, M., "Multiphysics analysis of backsheet blistering in photovoltaic modules," Sol. Energy, 183, 512-520 (2019). https://doi.org/10.1016/j.solener.2019.03.050
  18. Hulsmann, P., Weiss, K. A., "Simulation of water ingress into PV-modules: IEC-testing versus outdoor exposure," Sol. Energy, 115, 347-353 (2015). https://doi.org/10.1016/j.solener.2015.03.007
  19. Dadaniya, A., Datla, N. V., "Degradation prediction of encapsulant-glass adhesion in the photovoltaic module under outdoor and accelerated exposures," Sol. Energy, 208, 419-429 (2020). https://doi.org/10.1016/j.solener.2020.08.016
  20. Novoa, F. D., Miller, D. C., Dauskardt, R. H., "Adhesion and debonding kinetics of photovoltaic encapsulation in moist environments," Prog. Photovoltaics Res. Appl., 24, 183-194 (2016). https://doi.org/10.1002/pip.2657
  21. Tracy, J., D'hooge, D. R., Bosco, N., Delgado, C., Dauskardt, R., "Evaluating and predicting molecular mechanisms of adhesive degradation during field and accelerated aging of photovoltaic modules," Prog. Photovoltaics Res. Appl., 26, 981-993 (2018). https://doi.org/10.1002/pip.3045
  22. Sharma, V., Chandel, S. S., "Performance and degradation analysis for long term reliability of solar photovoltaic systems: A review," Renew. Sustain. Energy Rev., 27, 753-767 (2013). https://doi.org/10.1016/j.rser.2013.07.046
  23. Rosa-Clot, M., Tina, G. M., Nizetic, S., "Floating photovoltaic plants and wastewater basins: An Australian project Energy Procedia," 134, 664-674 (2017). https://doi.org/10.1016/j.egypro.2017.09.585
  24. Masuda, A., Yamamoto, C., Uchiyama, N., Ueno, K., Yamazaki, T., Mitsuhashi, K., Tsutsumida, A., Watanabe, J., Shirataki, J., Matsuda, K., "Sequential and combined acceleration tests for crystalline Si photovoltaic modules," Jpn. J. Appl. Phys., 55, 04ES10 (2016). https://doi.org/10.7567/JJAP.55.04ES10
  25. Li, Y. T., Lin, W. Y., Yang, W. L., Hsieh, C. F., "Sequential acceleration tests with Pressure Cooker Test (PCT) and UV for backsheets of PV modules," Energy Procedia, 150, 44-49 (2018). https://doi.org/10.1016/j.egypro.2018.09.009
  26. Suzuki, S., Tanahashi, T., Doi, T., Masuda, A., "Acceleration of degradation by highly accelerated stress test and air-included highly accelerated stress test in crystalline silicon photovoltaic modules," Jpn. J. Appl. Phys., 55, 022302 (2016). https://doi.org/10.7567/JJAP.55.022302
  27. IEC 61215-1-1, "Terrestrial photovoltaic (PV) modules - Design qualification and type approval-part 1-1: Special requirements for testing of crystalline silicon photovoltaic (PV) module" (2016).
  28. IEC 61730-1, "Photovoltaic (PV) module safety qualification - Part 1: Requirements for construction" (2018).
  29. Weiss, K-A., Assmus, M., Jack, S., Koehl, M., "Measurement and simulation of dynamic mechanical loads on PV-modules," Reliab. Photovolt. Cells, Modul. Components, Syst. II, 7412, 741203 (2009). https://doi.org/10.1117/12.824859
  30. Reil, F., Hermann, W., Jahn, U., "Breakage characteristics of crystalline PV modules under mechanical stress and their influence on the electrical behavior," 25th Symposium Photovoltaic Solar Energy (Kloster Banz, Bad Staffelstein, Germany), 4768 (2010).
  31. Michael, K., "IEEE recommended practice for qualification of photovoltaic (PV) modules SASB/SCC21 - SCC21 - Fuel Cells, Photovoltaics, Dispersed Gener. Energy Storage," https://standards.ieee.org/standard/1262-1995.html (1996).
  32. Wohlgemuth, J. H., Cunningham, D. W., Placer, N. V., Kelly, G. J., Nguyen, A. M., "The effect of cell thickness on module reliability," Conf. Rec. IEEE Photovolt. Spec. Conf., 23-26 (2008).
  33. Koch, S., Kupke, J., Tornow, D., Schoppa, M., Krauter, S., Grunow, P., "Dynamic Mechanical Load Tests on Crystalline Silicon Modules," 25th EPVSEC, 25, 3998-4001 (2010).
  34. Schill, C., Brachmann, S., Koehl, M., "Impact of soiling on IV-curves and efficiency of PV-modules," Sol. Energy, 112, 259-262 (2015). https://doi.org/10.1016/j.solener.2014.12.003
  35. Stein, J. S., McCaslin, S., Hansen, C. W., Boyson, W. E., Robinson, C. D., "Measuring PV system series resistance without full IV curves," IEEE 40th Photovoltaic Specialist Conference, PVSC 2014 (Institute of Electrical and Electronics Engineers Inc.), 2032-2036 (2014).
  36. Guerriero, P., Codecasa, L., d'Alessandro, V., Daliento, S., "Dynamic electro-thermal modeling of solar cells and modules," Sol. Energy, 179, 326-334 (2019). https://doi.org/10.1016/j.solener.2018.12.067
  37. Fertig, F., Rein, S., Schubert, M., Warta, W., "Impact of Junction Breakdown In Multi-Crystalline Silicon Solar Cells On Hot Spot Formation And Module Performance," 26th Eur. Photovolt. Sol. Energy Conf. Exhib., 5-9 (2011).
  38. Chaibi, Y., Salhi, M., El-jouni, A., Essadki, A., "A new method to extract the equivalent circuit parameters of a photovoltaic panel," Sol. Energy, 163, 376-386 (2018). https://doi.org/10.1016/j.solener.2018.02.017
  39. Vodermayer, C., Mayer, M., Mayer, M., Muller, T., Niess, M., Wotruba, G., Becker, G., Zehner, M., Schumacher, J., "First results-correlation between IR images and electrical behavior and energy yield of PV modules," Proceedings of the 23rd European photovoltaic solar energy conference and exhibition (EU PVSEC) (Valencia, Spain), 1 (2008).
  40. Kim, K. A., Krein, P. T., "Hot spotting and second breakdown effects on reverse I-V characteristics for mono-crystalline Si Photovoltaics," IEEE Energy Conversion Congress and Exposition, ECCE, 1007-1014 (2013).
  41. Kim, K. A., Seo, G. S., Cho, B. H., Krein, P. T., "Photovoltaic Hot-Spot Detection for Solar Panel Substrings Using AC Parameter Characterization," IEEE Trans. Power Electron., 31, 1121-1130 (2016). https://doi.org/10.1109/TPEL.2015.2417548
  42. Ma, M., Liu, H., Zhang, Z., Yun, P., Liu, F., "Rapid diagnosis of hot spot failure of crystalline silicon PV module based on I-V curve," Microelectron. Reliab., 100-101, 113402 (2019). https://doi.org/10.1016/j.microrel.2019.113402
  43. Green, M. A., "Solar cells: Operating principles, technology and System Applications," University of New South Wales, Kensington (1986).
  44. Olalla, C., Hasan, M. N., Deline, C., Maksimovic, D., "Mitigation of hot-spots in photovoltaic systems using distributed power electronics," Energies, 11, 1-16 (2018). https://doi.org/10.3390/en11010001
  45. Kim, K. A., Krein, P. T., "Reexamination of Photovoltaic Hot Spotting to Show Inadequacy of the Bypass Diode," IEEE J. Photovoltaics, 5, 1435-1441 (2015). https://doi.org/10.1109/JPHOTOV.2015.2444091
  46. Spanoche, S. A., Stewart, J. D., Hawley, S. L., Opris, I. E., "Model-based method for partially shaded PV modules hot spot suppression," Conf. Rec. IEEE Photovolt. Spec. Conf. (2012).
  47. Corrado, M., Infuso, A., Paggi, M., "Simulated hail impacts on flexible photovoltaic laminates: testing and modelling," Meccanica, 52, 1425-1439 (2017). https://doi.org/10.1007/s11012-016-0483-2
  48. Guo, B., Javed, W., Pett, C., Wu, C. Y., Scheffe, J. R., "Electrodynamic dust shield performance under simulated operating conditions for solar energy applications," Sol. Energy Mater. Sol. Cells, 185, 80-85 (2018). https://doi.org/10.1016/j.solmat.2018.05.021
  49. Punge, H. J., Kunz, M., "Hail observations and hailstorm characteristics in Europe: A review," Atmos. Res., 176-177, 159-184 (2016). https://doi.org/10.1016/j.atmosres.2016.02.012
  50. Kraemer, F., Wiese, S., Peter, E., Seib, J., "Mechanical problems of novel back contact solar modules," Microelectronics Reliability, 53, 1095-1100 (2013). https://doi.org/10.1016/j.microrel.2013.02.019
  51. Kilikeviciene, K., Matijosius, J., Kilikevicius, A., Jurevicius, M., Makarskas, V., Caban, J., Marczuk, A., "Research of the energy losses of photovoltaic (PV) modules after hail simulation using a newly-created testbed," Energies, 12, 4537 (2019). https://doi.org/10.3390/en12234537
  52. Tamizhmani, G., Li, B., Arends, T., Shisler, W., Voropayev, A., Parker, D., Kroner, K., Armstrong, J., "Failure rate analysis of module design qualification testing - IV: 1997-2005 vs. 2005-2007 vs. 2007-2009 vs. 2009-2011," Conference Record of the IEEE Photovoltaic Specialists Conference, 2426-2431 (2012).