DOI QR코드

DOI QR Code

Interruption of Helicobacter pylori-Induced NLRP3 Inflammasome Activation by Chalcone Derivatives

  • Choi, Hye Ri (College of Pharmacy, Kangwon National University) ;
  • Lim, Hyun (College of Pharmacy, Kangwon National University) ;
  • Lee, Ju Hee (College of Pharmacy, Kangwon National University) ;
  • Park, Haeil (College of Pharmacy, Kangwon National University) ;
  • Kim, Hyun Pyo (College of Pharmacy, Kangwon National University)
  • Received : 2020.10.29
  • Accepted : 2021.01.20
  • Published : 2021.07.01

Abstract

Helicobacter pylori causes chronic gastritis through cag pathogenicity island (cagPAI), vacuolating cytotoxin A (VacA), lipopolysaccharides (LPS), and flagellin as pathogen-related molecular patterns (PAMPs), which, in combination with the pattern recognition receptors (PRRs) of host cells promotes the expression and secretion of inflammation-causing cytokines and activates innate immune responses such as inflammasomes. To identify useful compounds against H. pylori-associated gastric disorders, the effect of chalcone derivatives to activate the nucleotide-binding oligomerization domain (NOD)-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome was examined in an H. pylori-infected human monocytic THP-1 cell line in this study. Among the five synthetic structurally-related chalcone derivatives examined, 2'-hydroxy-4',6'-dimethoxychalcone (8) and 2'-hydroxy-3,4,5-trimethoxychalcone (12) strongly blocked the NLRP3 inflammasome in H. pylori-infected THP-1 cells. At 10 μM, these compounds inhibited the production of active IL-1β, IL-18, and caspase-1, and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) oligomerization, but did not affect the expression levels of NLRP3, ASC, and pro-caspase-1. The interruption of NLRP3 inflammasome activation by these compounds was found to be mediated via the inhibition of the interleukin-1 receptor-associated kinase 4 (IRAK4)/IκBα/NF-κB signaling pathway. These compounds also inhibited caspase-4 production associated with non-canonical NLRP3 inflammasome activation. These results show for the first time that certain chalcones could interrupt the activation of the NLRP3 inflammasome in H. pylori-infected THP-1 cells. Therefore, these chalcones may be helpful in alleviating H. pylori-related inflammatory disorders including chronic gastritis.

Keywords

Acknowledgement

This study was financially supported by the National Research Foundation of Korea (NRF) by the Korea government (MSIT) (NRF-2019R1F1A1051567) and BK21-plus of Ministry of Education (Korea). The bioassay facility of New Drug Development Institute (KNU) was used.

References

  1. Alzahrani, S., Lina, T. T., Gonzalez, J., Pinchuk, I. V., Beswick, E. J. and Reyes, V. E. (2014) Effect of Helicobacter pylori on gastric epithelial cells. World J. Gastroenterol. 20, 12767-12780. https://doi.org/10.3748/wjg.v20.i36.12767
  2. An, Y., Zhang, H., Wang, C., Jiao, F., Xu, H., Wang, X., Luan, W., Ma, F., Ni, L., Tang, X., Liu, M., Guo, W. and Yu, L. (2019) Activation of ROS/MAPKs/NF-κB/NLRP3 and inhibition of efferocytosis in osteoclast-mediated diabetic osteoporosis. FASEB J. 33, 12515-12527. https://doi.org/10.1096/fj.201802805RR
  3. Caliskan, R., Yazgan, A. S., Tokman, H. B., Sofyali, E., Erzin, Y. Z., Akgul, O., Kurt, A., Kalayci, F., Ziver, T., Yuksel, P., Bal, K. and Kocazeybek, B. (2015) The cytokine response in THP-1 (monocyte) and HL-60 (neutrophil-differentiated) cells infected with different genotypes of Helicobacter pylori strains. Turk. J. Gastroenterol. 26, 297-303. https://doi.org/10.5152/tjg.2015.8058
  4. Casson, C. N., Yu, J., Reyes, V. M., Taschuk, F. O., Yadav, A., Copenhaver, A. M., Nguyen, H. T., Collman, R. G. and Shin, S. (2015) Human caspase-4 mediates noncanonical inflammasome activation against gram-negative bacterial pathogens. Proc. Natl. Acad. Sci. U.S.A. 112, 6688-6693. https://doi.org/10.1073/pnas.1421699112
  5. Castano-Rodriguez, N., Kaakoush, N. O. and Mitchell, H. M. (2014) Pattern-recognition receptors and gastric cancer. Front. Immunol. 5, 336. https://doi.org/10.3389/fimmu.2014.00336
  6. Dao, T. T. (2004) Synthesis and Biological Activities of Flavones and Related Compounds as Anti-Inflammatory Agents. Ph. D. Dissertation. Kangwon National University.
  7. Dao, T. T., Chi, Y. S., Kim, J., Kim, H. P., Kim, S. and Park, H. (2003) Synthesis and PGE2 inhibitory activity of 5,7-dihydroxyflavones and their O-methylated flavone analogs. Arch. Pharm. Res. 26, 345-350. https://doi.org/10.1007/BF02976690
  8. De Campos-Buzzi, F., Padaratz, P., Meira, A. V., Correa, R., Nunes, R. J. and Cechinel-Filho, V. (2007) 4'-Acetamidochalcone derivatives as potential antinociceptive agents. Molecules 12, 896-906. https://doi.org/10.3390/12040896
  9. Flannery, S. and Bowie, A. G. (2010) The interleukin-1 receptor-associated kinases: critical regulators of innate immune signalling. Biochem. Pharmacol. 80, 1981-1991. https://doi.org/10.1016/j.bcp.2010.06.020
  10. Gonzalez-Segovia, R., Quintanar, J. L., Salinas, E., Ceballos-Salazar, R., Aviles-Jimenez, F. and Torres-Lopez, J. (2008) Effect of the flavonoid quercetin on inflammation and lipid peroxidation induced by Helicobacter pylori in gastric mucosa of guinea pig. J. Gastroenterol. 43, 441-447. https://doi.org/10.1007/s00535-008-2184-7
  11. Guo, C., Fu, R., Wang, S., Huang, Y., Li, X., Zhou, M., Zhao, J. and Yang, N. (2018) NLRP3 inflammasome activation contributes to the pathogenesis of rheumatoid arthritis. Clin. Exp. Immunol. 194, 231-243. https://doi.org/10.1111/cei.13167
  12. Higuchi, K., Watanabe, T., Tanigawa, T., Tominaga, K., Fujiwara, Y. and Arakawa, T. (2010) Sofalcone, a gastroprotective drug, promotes gastric ulcer healing following eradication therapy for Helicobacter pylori: a randomized controlled comparative trial with cimetidine, an H2-receptor antagonist. J. Gastroenterol. Hepatol. 25, 155-160.
  13. Hitzler, I., Sayi, A., Kohler, E., Engler, D. B., Koch, K. N., Hardt, W. D. and Muller, A. (2012) Caspase-1 has both proinflammatory and regulatory properties in Helicobacter infections, which are differentially mediated by its substrates IL-1β and IL-18. J. Immunol. 188, 3594-3602. https://doi.org/10.4049/jimmunol.1103212
  14. Honda, H., Nagai, Y., Matsunaga, T., Okamoto, N., Watanabe, Y., Tsuneyama, K., Hayashi, H., Fujii, I., Ikutani, M., Hirai, Y., Muraguchi, A. and Takatsu, K. (2014) Isoliquiritigenin is a potent inhibitor of NLRP3 inflammasome activation and diet-induced adipose tissue inflammation. J. Leukoc. Biol. 96, 1087-1100. https://doi.org/10.1189/jlb.3A0114-005RR
  15. Israel, D. A. and Peek, R. M. (2018) Mechanisms of Helicobacter pylori-induced gastric inflammation. In Physiology of the Gastrointestinal Tract (6th ed.) (H. M. Said, Ed.), pp. 1517-1545. Academic Press.
  16. Jandial, D. D., Blair, C. A., Zhang, S., Krill, L. S., Zhang, Y. B. and Zi, X. (2014) Molecular targeted approaches to cancer therapy and prevention using chalcones. Curr. Cancer Drug Targets 14, 181-200. https://doi.org/10.2174/1568009614666140122160515
  17. Kameoka, S., Kameyama, T., Hayashi, T., Sato, S., Ohnishi, N., Hayashi, T., Murata-Kamiya, N., Higashi, H., Hatakeyama, M. and Takaoka, A. (2016) Helicobacter pylori induces IL-1β protein through the inflammasome activation in differentiated macrophagic cells. Biomed. Res. 37, 21-27. https://doi.org/10.2220/biomedres.37.21
  18. Kim, A., Lim, J. W., Kim, H. and Kim, H. (2016) Supplementation with Angelica keiskei inhibits expression of inflammatory mediators in the gastric mucosa of Helicobacter pylori-infected mice. Nutr. Res. 36, 488-497. https://doi.org/10.1016/j.nutres.2015.12.017
  19. Koziczak-Holbro, M., Joyce, C., Gluck, A., Kinzel, B., Muller, M. and Gram, H. (2007) Solving the IRAK-4 enigma: application of kinasedead knock-in mice. Ernst Schering Found. Symp. Proc. 3, 63-82.
  20. Kumar, S. and Dhiman, M. (2018) Inflammasome activation and regulation during Helicobacter pylori pathogenesis. Microb. Pathog. 125, 468-474. https://doi.org/10.1016/j.micpath.2018.10.012
  21. Kuo, C. H., Weng, B. C., Wu, C. C., Yang, S. F., Wu, D. C. and Wang, Y. C. (2014) Apigenin has anti-atrophic gastritis and anti-gastric cancer progression effects in Helicobacter pylori-infected Mongolian gerbils. J. Ethnopharmacol. 151, 1031-1039. https://doi.org/10.1016/j.jep.2013.11.040
  22. Lai, C. H., Rao, Y. K., Fang, S. H., Sing, Y. T. and Tzeng, Y. M. (2010) Identification of 3',4',5'-trimethoxychalcone analogues as potent inhibitors of Helicobacter pylori-induced inflammation in human gastric epithelial cells. Bioorg. Med. Chem. Lett. 20, 5462-5465. https://doi.org/10.1016/j.bmcl.2010.07.094
  23. Li, X., Liu, S., Luo, J., Liu, A., Tang, S., Liu, S., Yu, M. and Zhang, Y. (2015) Helicobacter pylori induces IL-1β and IL-18 production in human monocytic cell line through activation of NLRP3 inflammasome via ROS signaling pathway. Pathog. Dis. 73, ftu024.
  24. Li, X. (2008) IRAK4 in TLR/IL-1R signaling: possible clinical applications. Eur. J. Immunol. 38, 614-618. https://doi.org/10.1002/eji.200838161
  25. Lim, H., Min, D. S., Park, H. and Kim, H. P. (2018) Flavonoids interfere with NLRP3 inflammasome activation. Toxicol. Appl. Pharmacol. 355, 93-102. https://doi.org/10.1016/j.taap.2018.06.022
  26. Lin, S. H. and Shih, Y. W. (2014) Antitumor effects of the flavone chalcone: inhibition of invasion and migration through the FAK/JNK signaling pathway in human gastric adenocarcinoma AGS cells. Mol. Cell. Biochem. 391, 47-58. https://doi.org/10.1007/s11010-014-1986-6
  27. Liu, Q., Lv, H., Wen, Z., Ci, X. and Peng, L. (2017) Isoliquiritigenin activates nuclear factor erythroid-2 related factor 2 to suppress the NOD-like receptor protein 3 inflammasome and inhibits the NF-κB pathway in macrophages and in acute lung injury. Front. Immunol. 8, 1518. https://doi.org/10.3389/fimmu.2017.01518
  28. Man, S. M. and Kanneganti, T. D. (2015) Regulation of inflammasome activation. Immunol. Rev. 265, 6-21. https://doi.org/10.1111/imr.12296
  29. Miernyk, K., Morris, J., Bruden, D., McMahon, B., Hurlburt, D., Sacco, F., Parkinson, A., Hennessy, T. and Bruce, M. (2011) Characterization of Helicobacter pylori cagA and vacA genotypes among Alaskans and their correlation with clinical disease. J. Clin. Microbiol. 49, 3114-3121. https://doi.org/10.1128/JCM.00469-11
  30. Moossavi, M., Parsamanesh, N., Bahrami, A., Atkin, S. L. and Sahebkar, A. (2018) Role of the NLRP3 inflammasome in cancer. Mol. Cancer 17, 158. https://doi.org/10.1186/s12943-018-0900-3
  31. Nakamura, S., Watanabe, T., Tanigawa, T., Shimada, S., Nadatani, Y., Miyazaki, T., Iimuro, M. and Fujiwara, Y. (2018) Isoliquiritigenin ameliorates indomethacin-induced small intestinal damage by inhibiting NOD-like receptor family, pyrin domain-containing 3 inflammasome activation. Pharmacology 101, 236-245. https://doi.org/10.1159/000486599
  32. Nowakowska, Z. (2007) A review of anti-infective and anti-inflammatory chalcones. Eur. J. Med. Chem. 42, 125-137. https://doi.org/10.1016/j.ejmech.2006.09.019
  33. Obonyo, M., Sabet, M., Cole, S. P., Ebmeyer, J., Uematsu, S., Akira, S. and Guiney, D. G. (2007) Deficiencies of myeloid differentiation factor 88, toll-like receptor 2 (TLR2), or TLR4 produce specific defects in macrophage cytokine secretion induced by Helicobacter pylori. Infect. Immun. 75, 2408-2414. https://doi.org/10.1128/IAI.01794-06
  34. Pachathundikandi, S. K., Blaser, N. and Backert, S. (2019) Mechanisms of inflammasome signaling, microRNA induction and resolution of inflammation by Helicobacter pylori. Curr. Top. Microbiol. Immunol. 421, 267-302.
  35. Perera, A. P., Sajnani, K., Dickinson, J., Eri, R. and Korner, H. (2018) NLRP3 inflammasome in colitis and colitis-associated colorectal cancer. Mamm. Genome 29, 817-830. https://doi.org/10.1007/s00335-018-9783-2
  36. Perez-Figueroa, E., Torres, J., Sanchez-Zauco, N., Contreras-Ramos, A., Alvarez-Arellano, L. and Maldonado-Bernal, C. (2016) Activation of NLRP3 inflammasome in human neutrophils by Helicobacter pylori infection. Innate Immun. 22, 103-112. https://doi.org/10.1177/1753425915619475
  37. Sahu, N. K., Balbhadra, S. S., Choudhary, J. and Kohli, D. V. (2012) Exploring pharmacological significance of chalcone scaffold: a review. Curr. Med. Chem. 19, 209-225. https://doi.org/10.2174/092986712803414132
  38. Schmid-Burgk, J. L., Gaidt, M. M., Schmidt, T., Ebert, T. S., Bartok, E. and Hornung, V. (2015) Caspase-4 mediates non-canonical activation of the NLRP3 inflammasome in human myeloid cells. Eur. J. Immunol. 45, 2911-2917. https://doi.org/10.1002/eji.201545523
  39. Semper, R. P., Mejias-Luque, R., Gross, C., Anderl, F., Muller, A., Vieth, M., Busch, D. H., Prazeres da Costa, C., Ruland, J., Gross, O. and Gerhard, M. (2014) Helicobacter pylori-induced IL-1β secretion in innate immune cells is regulated by the NLRP3 inflammasome and requires the cag pathogenicity island. J. Immunol. 193, 3566-3576. https://doi.org/10.4049/jimmunol.1400362
  40. Shi, J., Zhao, Y., Wang, Y., Gao, W., Ding, J., Li, P., Hu, L. and Shao, F. (2014) Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514, 187-192. https://doi.org/10.1038/nature13683
  41. Takeda, K. and Akira, S. (2015) Toll-like receptors. Curr. Protoc. Immunol. 109, 14.12.1-14.12.10.
  42. Toth, A., Zajta, E., Csonka, K., Vagvolgyi, C., Netea, M. G. and Gacser, A. (2017) Specific pathways mediating inflammasome activation by Candida parapsilosis. Sci. Rep. 7, 43129. https://doi.org/10.1038/srep43129
  43. Vigano, E., Diamond, C. E., Spreafico, R., Balachander, A., Sobota, R. M. and Mortellaro, A. (2015) Human caspase-4 and caspase-5 regulate the one-step non-canonical inflammasome activation in monocytes. Nat. Commun. 6, 8761. https://doi.org/10.1038/ncomms9761
  44. Wang, Q. S., Xiang, Y., Cui, Y.-L., Lin, K.-M. and Zhang, X.-F. (2012) Dietary blue pigments derived from genipin, attenuate inflammation by inhibiting LPS-induced iNOS and COX-2 expression via the NF-κB inactivation. PLoS One 7, e34122. https://doi.org/10.1371/journal.pone.0034122
  45. Zeng, J., Chen, Y., Ding, R., Feng, L., Fu, Z., Yang, S., Deng, X., Xie, Z. and Zheng, S. (2017) Isoliquiritigenin alleviates early brain injury after experimental intracerebral hemorrhage via suppressing ROS- and/or NF-κB-mediated NLRP3 inflammasome activation by promoting Nrf2 antioxidant pathway. J. Neuroinflammation 14, 119. https://doi.org/10.1186/s12974-017-0895-5
  46. Zhang, S., Mo, F., Luo, Z., Huang, J., Sun, C. and Zhang, R. (2015) Flavonoid glycosides of Polygonum capitatum protect against inflammation associated with Helicobacter pylori infection. PLoS One 10, e0126584. https://doi.org/10.1371/journal.pone.0126584