DOI QR코드

DOI QR Code

Fast MRI in Acute Ischemic Stroke: Applications of MRI Acceleration Techniques for MR-Based Comprehensive Stroke Imaging

  • You, Sung-Hye (Department of Radiology, Anam Hospital, Korea University College of Medicine) ;
  • Kim, Byungjun (Department of Radiology, Anam Hospital, Korea University College of Medicine) ;
  • Kim, Bo Kyu (Department of Radiology, Anam Hospital, Korea University College of Medicine) ;
  • Park, Sang Eun (Department of Radiology, Anam Hospital, Korea University College of Medicine)
  • 투고 : 2021.02.28
  • 심사 : 2021.04.07
  • 발행 : 2021.06.30

초록

The role of neuroimaging in patients with acute ischemic stroke has been gradually increasing. The ultimate goal of stroke imaging is to make a streamlined imaging workflow for safe and efficient treatment based on optimized patient selection. In the era of multimodal comprehensive imaging in strokes, imaging based on computed tomography (CT) has been preferred for use in acute ischemic stroke, because, despite the unique strengths of magnetic resonance imaging (MRI), MRI has a longer scan duration than does CT-based imaging. However, recent improvements, such as multicoil technology and novel MRI acceleration techniques, including parallel imaging, simultaneous multi-section imaging, and compressed sensing, highlight the potential of comprehensive MR-based imaging for strokes. In this review, we discuss the role of stroke imaging in acute ischemic stroke management, as well as the strengths and limitations of MR-based imaging. Given these concepts, we review the current MR acceleration techniques that could be applied to stroke imaging and provide an overview of the previous research on each essential sequence: diffusion-weighted imaging, gradient-echo, fluid-attenuated inversion recovery, contrast-enhanced MR angiography, and MR perfusion imaging.

키워드

참고문헌

  1. Berkhemer OA, Fransen PS, Beumer D, et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med 2015;372(1):11-20 https://doi.org/10.1056/NEJMoa1411587
  2. Goyal M, Demchuk AM, Menon BK, et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med 2015;372:1019-1030 https://doi.org/10.1056/NEJMoa1414905
  3. Jovin TG, Chamorro A, Cobo E, et al. Thrombectomy within 8 hours after symptom onset in ischemic stroke. N Engl J Med 2015;372:2296-2306 https://doi.org/10.1056/NEJMoa1503780
  4. Saver JL, Goyal M, Bonafe A, et al. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N Engl J Med 2015;372:2285-2295 https://doi.org/10.1056/NEJMoa1415061
  5. Campbell BC, Mitchell PJ, Kleinig TJ, et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med 2015;372:1009-1018 https://doi.org/10.1056/NEJMoa1414792
  6. Bracard S, Ducrocq X, Mas JL, et al. Mechanical thrombectomy after intravenous alteplase versus alteplase alone after stroke (THRACE): a randomised controlled trial. Lancet Neurol 2016;15:1138-1147 https://doi.org/10.1016/S1474-4422(16)30177-6
  7. Nogueira RG, Jadhav AP, Haussen DC, et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med 2018;378:11-21 https://doi.org/10.1056/NEJMoa1706442
  8. Albers GW, Marks MP, Kemp S, et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med 2018;378:708-718 https://doi.org/10.1056/NEJMoa1713973
  9. Nael K, Sakai Y, Khatri P, Prestigiacomo CJ, Puig J, Vagal A. Imaging-based selection for endovascular treatment in stroke. Radiographics 2019;39:1696-1713 https://doi.org/10.1148/rg.2019190030
  10. Lima FO, Furie KL, Silva GS, et al. The pattern of leptomeningeal collaterals on CT angiography is a strong predictor of long-term functional outcome in stroke patients with large vessel intracranial occlusion. Stroke 2010;41:2316-2322 https://doi.org/10.1161/strokeaha.110.592303
  11. Menon BK, d'Esterre CD, Qazi EM, et al. Multiphase CT angiography: a new tool for the imaging triage of patients with acute ischemic stroke. Radiology 2015;275:510-520 https://doi.org/10.1148/radiol.15142256
  12. Hernandez-Perez M, Puig J, Blasco G, et al. Dynamic magnetic resonance angiography provides collateral circulation and hemodynamic information in acute ischemic stroke. Stroke 2016;47:531-534 https://doi.org/10.1161/STROKEAHA.115.010748
  13. Pfeifer CM. Rapid-sequence MRI of the brain: a distinct imaging study. AJNR Am J Neuroradiol 2018;39:E93-E94 https://doi.org/10.3174/ajnr.A5553
  14. Provost C, Soudant M, Legrand L, et al. Magnetic resonance imaging or computed tomography before treatment in acute ischemic stroke. Stroke 2019;50:659-664 https://doi.org/10.1161/STROKEAHA.118.023882
  15. Leslie-Mazwi TM, Hirsch JA, Falcone GJ, et al. Endovascular stroke treatment outcomes after patient selection based on magnetic resonance imaging and clinical criteria. JAMA Neurol 2016;73:43-49 https://doi.org/10.1001/jamaneurol.2015.3000
  16. Wisco D, Uchino K, Saqqur M, et al. Addition of hyperacute MRI AIDS in patient selection, decreasing the use of endovascular stroke therapy. Stroke 2014;45:467-472 https://doi.org/10.1161/STROKEAHA.113.003880
  17. Fink JN, Kumar S, Horkan C, et al. The stroke patient who woke up: clinical and radiological features, including diffusion and perfusion MRI. Stroke 2002;33:988-993 https://doi.org/10.1161/01.str.0000014585.17714.67
  18. Mackey J, Kleindorfer D, Sucharew H, et al. Population-based study of wake-up strokes. Neurology 2011;76:1662-1667 https://doi.org/10.1212/WNL.0b013e318219fb30
  19. Thomalla G, Simonsen CZ, Boutitie F, et al. MRI-guided thrombolysis for stroke with unknown time of onset. N Engl J Med 2018;379:611-622 https://doi.org/10.1056/NEJMoa1804355
  20. Petkova M, Rodrigo S, Lamy C, et al. MR imaging helps predict time from symptom onset in patients with acute stroke: implications for patients with unknown onset time. Radiology 2010;257:782-792 https://doi.org/10.1148/radiol.10100461
  21. Thomalla G, Cheng B, Ebinger M, et al. DWI-FLAIR mismatch for the identification of patients with acute ischaemic stroke within 4.5 h of symptom onset (PRE-FLAIR): a multicentre observational study. Lancet Neurol 2011;10:978-986 https://doi.org/10.1016/S1474-4422(11)70192-2
  22. Logallo N, Novotny V, Assmus J, et al. Tenecteplase versus alteplase for management of acute ischaemic stroke (NOR-TEST): a phase 3, randomised, open-label, blinded endpoint trial. Lancet Neurol 2017;16:781-788 https://doi.org/10.1016/S1474-4422(17)30253-3
  23. Vilela P, Rowley HA. Brain ischemia: CT and MRI techniques in acute ischemic stroke. Eur J Radiol 2017;96:162-172 https://doi.org/10.1016/j.ejrad.2017.08.014
  24. Rowley H, Vagal A. Stroke and stroke mimics: diagnosis and Treatment. In Hodler J, Kubik-Huch RA, von Schulthess GK. eds. Diseases of the brain, head and neck, spine 2020-2023: Diagnostic Imaging. Cham (CH), 2020:25-36
  25. Simonsen CZ, Yoo AJ, Rasmussen M, et al. Magnetic resonance imaging selection for endovascular stroke therapy: workflow in the GOLIATH trial. Stroke 2018;49:1402-1406 https://doi.org/10.1161/STROKEAHA.118.021038
  26. Poustchi-Amin M, Mirowitz SA, Brown JJ, McKinstry RC, Li T. Principles and applications of echo-planar imaging: a review for the general radiologist. Radiographics 2001;21:767-779 https://doi.org/10.1148/radiographics.21.3.g01ma23767
  27. Chung MS, Lee JY, Jung SC, et al. Reliability of fast magnetic resonance imaging for acute ischemic stroke patients using a 1.5-T scanner. Eur Radiol 2019;29:2641-2650 https://doi.org/10.1007/s00330-018-5812-5
  28. Kozak BM, Jaimes C, Kirsch J, Gee MS. MRI techniques to decrease imaging times in children. Radiographics 2020;40:485-502 https://doi.org/10.1148/rg.2020190112
  29. Deshmane A, Gulani V, Griswold MA, Seiberlich N. Parallel MR imaging. J Magn Reson Imaging 2012;36:55-72 https://doi.org/10.1002/jmri.23639
  30. Barth M, Breuer F, Koopmans PJ, Norris DG, Poser BA. Simultaneous multislice (SMS) imaging techniques. Magn Reson Med 2016;75:63-81 https://doi.org/10.1002/mrm.25897
  31. Feinberg DA, Setsompop K. Ultra-fast MRI of the human brain with simultaneous multi-slice imaging. J Magn Reson 2013;229:90-100 https://doi.org/10.1016/j.jmr.2013.02.002
  32. Vranic JE, Cross NM, Wang Y, Hippe DS, de Weerdt E, Mossa-Basha M. Compressed sensing-sensitivity encoding (CS-SENSE) accelerated brain imaging: reduced scan time without reduced image quality. AJNR Am J Neuroradiol 2019;40:92-98 https://doi.org/10.3174/ajnr.A5905
  33. Delattre BMA, Boudabbous S, Hansen C, Neroladaki A, Hachulla AL, Vargas MI. Compressed sensing MRI of different organs: ready for clinical daily practice? Eur Radiol 2020;30:308-319 https://doi.org/10.1007/s00330-019-06319-0
  34. Park SJ, Ahn CB. Blended-transfer learning for compressed-sensing cardiac cine MRI. Investig Magn Reson Imaging 2021;25:10-22 https://doi.org/10.13104/imri.2021.25.1.10
  35. Willinek WA, Gieseke J, von Falkenhausen M, Neuen B, Schild HH, Kuhl CK. Sensitivity encoding for fast MR imaging of the brain in patients with stroke. Radiology 2003;228:669-675 https://doi.org/10.1148/radiol.2283020243
  36. U-King-Im JM, Trivedi RA, Graves MJ, et al. Utility of an ultrafast magnetic resonance imaging protocol in recent and semi-recent strokes. J Neurol Neurosurg Psychiatry 2005;76:1002-1005 https://doi.org/10.1136/jnnp.2004.046201
  37. Nael K, Khan R, Choudhary G, et al. Six-minute magnetic resonance imaging protocol for evaluation of acute ischemic stroke: pushing the boundaries. Stroke 2014;45:1985-1991 https://doi.org/10.1161/STROKEAHA.114.005305
  38. Prakkamakul S, Witzel T, Huang S, et al. Ultrafast brain MRI: clinical deployment and comparison to conventional brain MRI at 3T. J Neuroimaging 2016;26:503-510 https://doi.org/10.1111/jon.12365
  39. Ryu KH, Choi DS, Baek HJ, et al. Clinical feasibility of 1-min ultrafast brain MRI compared with routine brain MRI using synthetic MRI: a single center pilot study. J Neurol 2019;266:431-439 https://doi.org/10.1007/s00415-018-9149-4
  40. Skare S, Sprenger T, Norbeck O, et al. A 1-minute full brain MR exam using a multicontrast EPI sequence. Magn Reson Med 2018;79:3045-3054 https://doi.org/10.1002/mrm.26974
  41. Meshksar A, Villablanca JP, Khan R, Carmody R, Coull B, Nael K. Role of EPI-FLAIR in patients with acute stroke: a comparative analysis with FLAIR. AJNR Am J Neuroradiol 2014;35:878-883 https://doi.org/10.3174/ajnr.A3786
  42. Boujan T, Neuberger U, Pfaff J, et al. Value of contrast-enhanced MRA versus time-of-flight MRA in acute ischemic stroke MRI. AJNR Am J Neuroradiol 2018;39:1710-1716 https://doi.org/10.3174/ajnr.A5771
  43. Le Bras A, Raoult H, Ferre JC, Ronziere T, Gauvrit JY. Optimal MRI sequence for identifying occlusion location in acute stroke: which value of time-resolved contrast-enhanced MRA? AJNR Am J Neuroradiol 2015;36:1081-1088 https://doi.org/10.3174/ajnr.A4264
  44. Bak SH, Roh HG, Moon WJ, Choi JW, An HS. Appropriate minimal dose of gadobutrol for 3D time-resolved MRA of the supra-aortic arteries: comparison with conventional single-phase high-resolution 3D contrast-enhanced MRA. AJNR Am J Neuroradiol 2017;38:1383-1390 https://doi.org/10.3174/ajnr.A5176
  45. Chakhoyan A, Leu K, Pope WB, Cloughesy TF, Ellingson BM. Improved spatiotemporal resolution of dynamic susceptibility contrast perfusion MRI in brain tumors using simultaneous multi-slice echo-planar imaging. AJNR Am J Neuroradiol 2018;39:43-45 https://doi.org/10.3174/ajnr.A5433
  46. Glockner JF, Hu HH, Stanley DW, Angelos L, King K. Parallel MR imaging: a user's guide. Radiographics 2005;25:1279-1297 https://doi.org/10.1148/rg.255045202
  47. Riederer SJ, Haider CR, Borisch EA, Weavers PT, Young PM. Recent advances in 3D time-resolved contrast-enhanced MR angiography. J Magn Reson Imaging 2015;42:3-22 https://doi.org/10.1002/jmri.24880
  48. Giannatempo GM, Scarabino T, Popolizio T, Parracino T, Serricchio E, Simeone A. 3.0 T perfusion MRI dynamic susceptibility contrast and dynamic contrast-enhanced techniques. In Scarabino T, Pollice S, Popolizio T, eds. High field brain MRI. Springer, Cham, 2017:113-131
  49. Shah S, Luby M, Poole K, et al. Screening with MRI for accurate and rapid stroke treatment: SMART. Neurology 2015;84:2438-2444 https://doi.org/10.1212/WNL.0000000000001678