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BESSEL-WRIGHT TRANSFORM IN THE SETTING OF
QUANTUM CALCULUS

ILyEs KAROUI, LAZHAR DHAOUADI, WAFA BINOUS, AND MENIAR HADDAD

ABSTRACT. This work is devoted to the study of a g-harmonic analysis related to the
g-analog of the Bessel-Wright integral transform [6]. We establish some important
properties of this transform and we focalise our attention in studying the associated
transmutation operator.

1. Introduction

Recently, a new discipline was created and interested a lot of researchers : the ¢-
harmonic analysis [9] who find application in the g-deformed mechanics. This theory
was first elaborated by Koornwinder and R.F. Swarttouw [12] and then by Fitouhi et
al. [3,5,7] who investigated in the ¢-Bessel function and the g-Fourier transform and

related g-harmonic analysis, g-orthogonality relation, g-Plancherel formulae, ¢g-Hardy
Theorem [3].

Motivated by these gigantic growth and taking into account the work of the classical
Bessel-Wright operator [6, 11], it is quite legitimate to try to extend these results
to the quantum calculus case. We define the analog of the Bessel-Wright operator
2,6,11] and we try to give a g-integral representation of the ¢-Bessel-Wright function
introduced via the ¢-hypergeometric functions.

To make this work self containing, we shall try to generalize our results starting
by presenting some results associated with the ¢-Bessel transform, deeply studied
on [3-5,7], which will be useful in the sequel. Next, we present the basic tool in our
work: the g-transmutation operator. This g-transmutation operator associated to the
g-Bessel-Wright function is deeply studied in section 3 and the most important results
are proved as well as the ¢-Bessel-Wright operator.

Finally, in Section 4, we introduce the ¢-Bessel-Wright transform. We prove many
results that will be a strong step in studying a large class of ¢g-integral transform.
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2. Preliminaries on ¢-harmonic analysis

Throughout this paper, we will assume that 0 < ¢ < 1, > —1 and g > 0. We
refer to [9] for the definitions, notations and properties of the g-shifted factorials, the
Jackson’s g-derivative and the Jackson’s g-integrals.

The g¢-shifted factorial are defined by

@ao=1, (@0)=[[(1-0¢), (a:0)o = [[(1—ag®).

and
+ _ n .
Ry ={¢" : neZ}.
The g-derivative of a function f is given by

f(@) — flgz)
D, f(x) = if
The ¢-Jackson integrals from 0 to a and from 0 to oo are defined by [9]

| e = 1= a3 faae

x # 0.

“+00

fl@ydgr =(1—q) > flq")q",

n=—oo

0

provided the sums converge absolutely.
The space L, , 1 < p < 0o denote the set of functions on Rg for which

+o0 et 1/p
s = | [ 1P " dye| <o

o0

and Em,(a,ﬁ) (R;) the set of functions on R} for which

+00 . 1/p
{/ 2 F (@) 2 dya
0

< Q.
We define the g-inner product (,), in the Hilbert space £, as follow

+o00
f,9€ Lyoa=(f,9), = flx)g(z) |z dye.

Similarly C, is the space of continuous functions at 0 for which

[fllg.ec = sup [f(2)] < o0

z€RYT

and C, the space of continuous functions at 0 and bounded on R

The space S(R]) denote the set of the g-analogue of the Schwartz space f defined
on R such

that for all n € N D f is continuous at 0, and verifying

mhinka |Df (z)] =0, Vn,keN,

and D, , (R;) denote the subspace of S(R/) with compact support in [—a, a].
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The g-Paley-Wiener space is the sets of functions on R} defined as follow

PW2, = {f (x) = /Oau (t) jo (2t;¢%) dgt, w € qua} .

The normalized ¢-Bessel function is defined by
o0 n(n+1)

Jal,q%) = Y (1) 2",

(@2, ¢%)n(q?, ¢*)n

The ¢-Bessel function has the following g-Mehler integral representation [7]

. 1 !
jo(@,¢%) = cgat1 (—5)/ Wasa (t;¢°) cos(at; ¢*)d,t
0

n=0

where

(1) o () = () (% 6)es
T ) (PR 2)

and W, the function defined by formula

(2) %% (t' q2) — 1 (q2t2§ qQ)OO

(1= a) (% ¢%)
And these two formulas (1) and (2) give the following formula

1 ' 2\ 12n,26+1 1
(3) Cqa (f)m/{) Wa (t; %) £t dt = (o2, g2)
The ¢-Bessel operator as follow
1 1

Dgof (@) = = [fla70) = (1L + ) f(2) + ¢ f(qz)]

The function x — j,(Az, ¢?) is an eigenfunction of A, for the eigenvalue —\2.
The g-Bessel Fourier transform F, , is defined by

—+00

Faa (f) (@) = cga i F () jo (wt; ¢%) 22 dgt.

THEOREM 1. We have
Foa Lta (R;) — Cy0 (R;)
and
Foa : SRY) = S(RY)
and
Foo: Dqﬂ(R;) — PW/ ..
Proof. Using [5, Proposition 3.1], we get
Faa : Lora (RY) = Coo (RS)
Via [5, Corollary 3.3], we get
Foa : SRY) = S(RY)
and by [4, Theorem 1|, we have
Foo: Dqﬂ(R;) — PW7,.
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3. On the ¢g-Bessel-Wright function

We start this section by defining the ¢-Bessel-Wright function

(4) Jap(@,¢?) = 2P (% 5 7 ¢ )
oo ( 1>n qn(n-i-l) on
— (@2, ¢*)n(q*72,¢%)n

PROPOSITION 1. The g-Bessel-Wright function x — jia ) (Az,¢*) is an eigenfunc-
tion of the g-Bessel-Wright difference operator A, gy associated to the eigenvalue

—)\2
Ao f () = % [f (a7"'%) = (" +¢) f (@) + D f (qu) = (1-¢*) (1= ¢) £(0)] .
Proof. We have

1 — g20+2i\ (1 — 2B+2i L ,
(1—g¢ )1 —q ) — g% (q2a +q25) 1 gHetA+2i

¢
So we get
no_ ( + 2[3) +q 2(a+B)+2n
_ TL 2n—2
Aap)ian (@ q®) = Z H + ¢28) + qRlath)t2 z
n=1 =1

= _A(a,B)](a,ﬁ)(x7q ),

which leads to the result. O

PROPOSITION 2. The q-Bessel-Wright difference operator could be factorized as
follow

A(a,p) = 0400,
where
f(z) = ¢+ f (qv)
X

f(q2) = FO)] = ¢ [f () = / (0)]

X

aq,af (I) -
a;,/jf () =

Proof. A simple calculation leads to the result

[/ (a7 "'2)—F O] - [f(@)~£(O)] qRor1 L@ =10 -¢*[f(gr)-(O)
0g.a0; 5f (x) = = £

T

flatz) = (P + ) [ (x) = @772 f (qz) — (1 — ¢*) (1 — ¢*°) £ (0)

2

T

= Awppf ().
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ProprosITION 3. We have

aq,aj(a+%’5) (ZU, q2) — _q2 (]_ — q25+4) xj(a+%,,3+1) (qaj’ q2)
wnd . 2 2044\ - 2 1—¢*
0% siap) (ar;¢%) = —qz (1 — 1) Jlar1,8 (a2 ¢°) — m

Proof. The following calculation

8q,aj(a+%’5) (l‘, q2)
o0 n(n+1)

(
- Z(_l)n 2a+3 % 2342, 2
(@%%3¢%)n(@® 2 ¢

n=1

221 (1 _ q2a+1+2n)

n(n—1)

- 28+4Y 2 n—l d
- _ (1 —q ) q xZ(—l) (23; )1 (2P )y (qz

)2(71—1)

= _q2 (1 - q26+4) mj(a+%’g+1) (qu, q2>7

and
0, g (423 ¢°)
_ s @6 —1] = ¢ [jap (g2:¢°) — 1]
qr
_ e @) = 1] = 6% s (@:0®) = 1] 1=¢*
qz qz
_ i(_lyi qn(n+1) x2n71 <1 _ q25+2n> B 1 — q2ﬁ
e (¢**%¢*)n (a2 %) q qz
0 n(n—1) 1 — g?b
- 2a+4 q 2n-1) 1 =g
o nzl orbe2g )n71<q26+23q2>n71 (e) qx
e . 1 - q
= —qz (1= ¢"") jor1,9(q2:6°) — "
leads to the result. O

In this step of our work, we introduce a ¢-Transmutation operator. This will
allow us to stake out the ¢-Bessel-Wright function properties from the usual g-Bessel
function. The bellow proposition will be a strong step in generalizing the g-Bessel
properties (integrability, bounds, etc) to be applied to the ¢-Bessel-Wright function.

DEFINITION 1. The g-Bessel intertwining operator R, g is defined by

Ras () () = 05 (0) / Wi ()t (xt) dyt

where ¢, g is defined by the formula (1), and Wj is the function defined by the formula
(2).
THEOREM 2. If
a+1<p

then we have
Rep: Lopa (RY) = Lopa (R)) .
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Proof. Let f € L4 (R;’). Using the generalized Minkowski integral inequality

[10], we obtain
Ras Dl = [ [ ][ w0125 a0

= /Wﬁ {/ ’f(xt)’p-’ﬂzaﬂd:v} dgt

= / Vs (t)t{/ ./ ($)|p$2°‘“dx}ptl—Q(“J”dqt
0

< /0 Wy ()t

PROPOSITION 4. The operator Rqﬁ has the following inverse operator

P
$2a+1dq$:|

£l p,0 < 00

RL(f) (x) = / W (1) f (at) tdt.
Proof. We introduce the following operator

Hys (1) (@) = 0 (0) (1= )" [ Wi (wt) bt Vo € By,

Using [1, lemma 2| we obtain
H_5(f) = Hyp(f).
Note that
Hop (f) (@) = (1= ¢*)" @Ry (£) (2)
which implies
HA(N) (@) =(1-) e »RA(f) (), VreRF
So we get
_ ) [
Rt = [ o
]

PROPOSITION 5. The q-Bessel-Wright function is related to the q-Bessel function
via the following formula

J8) (2:6°) = R (Ja (2:67))

and we have

(5) s (e, ¢®)| <1, VoeR],
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Proof. Using formula (4), we get

+oo n(n+1) 1 1
. . n q 2n .2 42n+1
Rys (Ja z: ¢ = (-1)'————x [c ,a(O)—/ W (t;¢7) t7" " d,t
qﬁ( ( )) ; ) (q2a+2;q2)n q (qQ;qQ)n o 5( ) q
+00 n(n
- Z<_1)n 20+2 g | +12) 2. 42 ™"
n=0 (q or 1 q )n (q a 4 )n

We define the ¢g-Transmutation operator W, , s as follow

2 OO (q2§;q2> 200—1
Waas (1)) = cqs @272 [ s ey 0

and which can be also written it in the following form

Weap (f) (x) = (Ciﬁ—((;; /100 éé;;;i]?))m [ (at) 27Nt

In the following, we prove that the operator W, , s leaves invariant the spaces
S, (RF) and D, (R}) and that under some conditions, it send the space Lgp.q (RY)
to the space L, o (R;) )

THEOREM 3. The g-Bessel-Wright Transmutation operator satisfy the following
properties

1. We have
(6) Wt Lgta (R;) — Lg1a (R;)
2. If a +1 < p then we have
Wq’ayg : £q7p7a (R;) — Eq,p,a (R;r)
3. We have
(7) Waas : Sq (Ry) = S (R])
and
Weas 1 Dg (RY) = Dy (RY) .
Proof. We have
fe ﬁq,La (R;)
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Using the generalized Minkowski integral inequality [10], we obtain

Waas () (@)l

hSA

< 2 5 p

00 Sy 7,4 )

_ Cqﬁ (0) / / gf (l’t) t2a—1dqt 1‘2a+1dql’
0 1

=

- adoo 131
o) / ’f (.l’t)|p (L‘2a+1dl’ t2a_1dqt
0

)
( 2 aQ) - -
o0
P ooq_1_2(tl)

. _
[ It ey
L/ O J

AN
@)
<
sy
—
(e
=
»\
8
/N
TS
=)
o

=

AN
@)
<
sy
—~
o
=
»\
3
VRS
TS
(=)
[
N—
3

201 2(atl)

¢ v dgt | fllgpa

AN
@)
S
@
—~
(e
S—
»—\
8
VRS
TS
Q
)
~
8

IN

- 2 fllpa <00if I >a(p—1).
(1-49) (qz( ;U_Qa;ff)oo @),

Hence, for p = 1, we have
Waas + Lg1a (Rz—;) — Lg1a (R;—) (R+) :

To prove the second result, we have

0 f (wt) 2 t

Wias () () = 22O | (

_ ¢q8(0) "
DR
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Using the Dominated Convergence Theorem, we get
lim a” | DI (z)]

T—+00
T—+400

< lim 2” / o gn DR f (at)] 20Nt
1 (qzﬁ.q2>

" lim [(tz)” | Dy f (at)|] 2% dyt = 0.

T—>+00

I
;\8
/N
E
Yl
Ql\')
—
8

So
Wias : Sq(Ry) = Sy (Ry).
Let f € D,. (R,), we have

Waap () ()

- <q21_§. q2>
= ¢45(0) an[B (1-q) (qw%;o;Q) f () u2a71dqu

IQ
(qQU—z; q2>

Cqp(0) x_Qo‘/x (=0 (@2 OZ’] g fw) v du, if v <a

0, ifx>a

w2
We conclude that Wea.5 (f) € Dya (R]) - O
PROPOSITION 6. Let f,g € L, (R;r) NLypa (R;) , such that %+ % =1. We get
(8) (fiRas(9))0 = Waap (f) 9)s -
Proof. Indeed,
1-4q) i

- > " [ l(q Q) 2a+1 7 o
i eR (D = [T | [ a0,

= /000g (x) /09: %uf (u) dyu| 2> 'd,x

— Oof (u) -u2a > (ng—z;qz)” (:E) xZafld T u2a+1d U
0 3 (q2ﬂz_§7q2) g q q
(1=q) .,

——=< Wi (9): )
Cop (0) < q 5( ) >

The computation are justified by the Fubini’s Theorem and Theorem 6 & 7:
+oo 2)

2a+1 dqtdqﬂf

IN

/0 g ()] ﬁaﬂdtﬂj X HR%B (f)Hq,ﬁa

S Hqu,p,a X ||RQ»5 (f)”qj,a < 0.
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4. The ¢-Bessel-Wright transform

In this section, we define the ¢-Bessel-Wright transform, and we investigate in the
related g-harmonic analysis.

DEFINITION 2. Let f € L1, (R,), we define the ¢g-Bessel-Wright transform as

follow
“+o00

Fiap) () (#:6°) = co ) AR ACECE (wt; ¢?) 22T 1d,t

where

. B < 1 )2 (q2a+2;q2)oo (q2ﬁ+2;q2)oo
e \1—g) (@) ().
PROPOSITION 7. Let f,g € L1, (R,) we have

+00 400
; Flap (f) () g (x) 2*F dyz = 0 f(z) Flap (9) (x) 2** T d .
Proof. Let f,g € L41.4 (R,). Then we have
400

Flap (f) () g () 2*H dya
+oo +00
— / [Cq,(a,g) f(t) Ja ) (mt; q2) t2a+1dqt:| g (@) SL’Mqux
0 0

+oo +o00o
-/ ["‘“aﬁ’ | e Gt s @ d} £ (1) 121t
0 0
+o0

= F () Fap (9) () 27 dyt

The computation are justified by the Fubini’s Theorem. In fact

/0+°° ‘ /O+OO ft)jws (2t:6%) g (2)

+o00 +o0o
/ one
0 0
+oo +o0
|t [l @le
0 0

< Nfllgra x llgllg.a-
So we get the result. O]

t2a+1$2a+1dqtdq$

IN

t2a+1$2a+1dqtdql'

IN

COROLLARY 1. Let f € Lypa (R;) we have

Flap) () = Foa ©Wyap (f)
and
Flapy (1) (2:6°) = Wya 50 Foa ()
where F, , is the g-Bessel transform [4].
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Proof. Using (8), we have
1

Flap) (f) (256°)

+oo

= F(0) Jap (at:0°) £ dgt
0

= (/i Rag (o (v547))),
= Waas (f) o (256%)),
= Fya°Wyas(@).
Using F,, = Fga, We get
Fron) (D) (@367) = W0 (f) 0 Fya
In fact W_, O{ s (f) exists because R;é exists and we have

(/i Rqp (9) = Waap (f):9)a-

0
THEOREM 4. Let f € L1, (R,) then we have
| Fanfll oo < Caten 1fllg1a-
Proof. Using formula (5)
| Fapfll,o = sup [Fapf(@)]
xERJ
e 2\ | 12041
< Cq,(a,ﬁ)/ |f (8)] sup |jia,m (2t;¢°)| 120 dgt
0 z€RY
S Cq7(a7ﬁ) ||f||q7170¢’
so we get the result. O]

THEOREM 5. The q-Bessel-Wright transform verifies the following properties

f(a’g) : ﬁq,l,a (R;) — Cq70 (R;r) .
: If a +1 < p then we have
Flap) * Lapa (Ry) = Lopa (RT)

Flp) : SRy) = S(R))

Flap) : 'Da(R;) — PW;‘a
Proof. Using the fact that
fq’a © q,ChB?
and the fact that the operator W, , s send the space £, 14 (R;) to Lg1.a (Rj). We

combine this result with Theorem (1), we get

Flap) : Lgta (R;) — Cq0 (R;)
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Since the operator W, . 3 leaves S(R]) and D,(R]") invariant, using the Theorem (1)
we get

Fap : S(Ry) = S(Ry)
and

f(a,ﬁ) : DQ(R(—;) — PW;?CL

5. Example and Application

To highlight the contribution of our work, we propose to investigate in the (a, l)

2
g-Bessel-Wright transform.

PROPOSITION 8. Let § = %, the function j<a 1)
2
Jany @) = 2@ (¢ 54 ¢% 0 ¢°0%)
0 n(n+1)
n q n
- Z(_l) 2012 2\ (03 2 z?

n=0
is a g-analog of the Struve function [8].

ProrosITION 9. The ¢-Struve function  +— j (A\z, ¢?) is an eigenfunction of

()

the q-Struve difference operator A associated to the eigenvalue —\?>where

()
Aaiyf (@) = % [ (g 2) = (¢ +¢) [ (@) + ¢ f (qu) — (1= ¢**) (1 —q) f(0)]

DEFINITION 3. Let f € £, .1 (Ry), we define the g-Struve transform [8] as follow

“+o0

) (N @@) =gy | 0oy (@ha) 27yt

SIS

1
2

where

(LY @) ()
w(03) " \1-¢) (). ()
LEMMA 1. The g-Struve transform verifies the following properties
1.
]:(a,%) L 1a (Réf) — Cqo (R;)

N

Flay)  S®S) = S®])

f( ) : 'DQ(R;—) — PW:G

a,

N|=

| Py < Cutoty 190y

Proof. Since we fixed f = %,We satisfy conditions of Theorem 6 and 7, and so we
get the result. O]

REMARK 1. In the same way, we can define the following g-analog transform
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e The Hankel transform when a = 0.

e The Y transform when « = 3.

e The Hartley transform when o = —%.
e The Hardy transform which was first introduced by G.H. Hardy [13].
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