ON SEQUENTIALLY g-CONNECTED COMPONENTS AND SEQUENTIALLY LOCALLY g-CONNECTEDNESS

Palanichamy Vijayashanthi

ABSTRACT. In this paper, we introduce the definition of sequentially g-connected components and sequentially locally g-connected by using sequentially g-closed sets. Moreover, we investigate some characterization of sequentially g-connected components and sequentially locally g-connected.

1. Introductions

Generalized closed sets is a vital role in General Topology. The concept of generalized closed set (briefly, g-closed set) of a topological space and a class of topological spaces called $T_{1/2}$ -spaces was introduced by Levine [7]. Also, these sets were considered first by Dunham and Levine [4] and then by Dunham [3].

The purpose of this paper is to introduce and study the concepts of a sequentially g-connected components and sequentially locally g-connected space by using sequentially g-closed sets. Throughout this paper, we consider a topological space (X, τ) and investigate some results in this generalized setting.

2. Preliminaries

We recall the following definitions.

DEFINITION 2.1. Let (X, τ) be a topological space. A subset A of X is called q-closed [7] if $cl(A) \subset G$ holds whenever $A \subset G$ and G is open in X.

A is called g-open of X if its complement A^c is g-closed in X. Every open set is g-open [7].

LEMMA 2.2. A topological space X is said to be $T_{1/2}$ [1] if every g-closed set in X is closed in X.

DEFINITION 2.3. Let (X, τ) be a topological space. A subset A of X is called sequentially closed [5] if for every sequence (x_n) in A with $(x_n) \to x$, then $x \in A$.

Received January 27, 2021. Revised March 2, 2021. Accepted March 4, 2021.

²⁰¹⁰ Mathematics Subject Classification: 54A05, 54A20.

Key words and phrases: sequentially g-open, g-converges, sequentially g-continuous, sequentially g-connected.

[©] The Kangwon-Kyungki Mathematical Society, 2021.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

DEFINITION 2.4. Let (X, τ) be a topological space. A sequence (x_n) in a space X g-converges to a point $x \in X$ [2] if (x_n) is eventually in every g-open set containing x and is denoted by $(x_n) \xrightarrow{g} x$ and x is called the g-limit of the sequence (x_n) , denoted by $g \lim x_n$.

DEFINITION 2.5. Let (X, τ) be a topological space. A subset A of X is called sequentially g-closed [2] if every sequence in A g-converges to a point in A. A sequentially g-open subset U (which is the complement of a sequentially g-closed set) is one in which every sequence in X which g-converges to a point in U is eventually in U.

DEFINITION 2.6. Let (X, τ) and (Y, σ) be any two topological spaces. Then a map $f: (X, \tau) \to (Y, \sigma)$ is said to be sequentially g-continuous at $x \in X$ [2] if the sequence $(f(x_n)) \xrightarrow{g} f(x)$ whenever the sequence $(x_n) \xrightarrow{g} x$. If f is sequentially g-continuous at each $x \in X$, then it is said to be a sequentially g-continuous function.

3. Sequentially g-connected

In this section, we discuss characterization of Sequentially g-connected in topological spaces.

DEFINITION 3.1. A subset A of a topological space (X, τ) is called a g-neighborhood of a point $x \in X$ if there exists a g-open set U with $x \in U \subset A$.

DEFINITION 3.2. Let (X, τ) be a topological space, $A \subset X$ and let S[A] be the set of all sequences in A. Then the sequential g-closure of A, denoted by $[A]_{g_{seq}}$, is defined as

$$[A]_{g_{seq}} = \{x \in X \mid x = glim \ x_n \text{ and } (x_n) \in S[A] \cap c_g(X)\}$$

 $c_q(X)$ denote the set of all g-convergent sequences in X.

LEMMA 3.3. Let (X,τ) be a topological space. Then the following hold.

- (a) Every g-convergence sequence is convergence sequence.
- (b) In $T_{1/2}$ space, convergence coincides with g-convergence.
- *Proof.* (a) Suppose that (x_n) be a sequence in X such that $(x_n) \xrightarrow{g} x$. Let U be a neighborhood of x. Since every open set is g-open, U is a g-open neighborhood of x. Therefore, there exists $N \in \mathbb{N}$ such that $(x_n) \in U$ for all $n \geq N$. Thus, $(x_n) \to x$.
- (b) Let (x_n) be a sequence in X. Suppose $(x_n) \xrightarrow{g} x$, then by (a), every g-convergence sequence is a convergence sequence. Suppose that $(x_n) \to x$. Let U be a g-open neighborhood of x. Since X is a $T_{1/2}$ space, U is a open neighborhood of x. Since $(x_n) \to x$, there exists $n_0 \in \mathbb{N}$ such that $x_n \in U$ for all $n \geq n_0$. Therefore, $(x_n) \xrightarrow{g} x$. Hence the convergence g-convergence of sequences coincide in a $T_{1/2}$ space.

THEOREM 3.4. Let (X, τ) be a topological space and A be a subset of X. Then A is sequentially g-open if and only if each $b \in A$ has a sequentially g-neighborhood U_b such that $U_b \subseteq A$.

Proof. It is enough to prove that the union of any collection of sequentially g-open subsets of X is sequentially g-open.

Let $\{A_{\alpha} \mid \alpha \in \Delta\}$ be a collection of sequentially g-open subsets of X where α is an arbitrary index set. If $\cup A_{\alpha} = \emptyset$, then there is nothing to prove. Suppose $\cup A_{\alpha} \neq \emptyset$.

Then $x \in [\cup A_{\alpha}]_{g_{seq}}$ and so there exists a sequence (x_n) of points in $\bigcup_{\alpha \in \Delta} A_{\alpha}$ such that $(x_n) \xrightarrow{g} x$. Therefore, for each $\alpha \in \Delta$, (x_n) are points in A_{α} such that $(x_n) \xrightarrow{g} x$.

Therefore, $x \in [A_{\alpha}]_{g_{seq}}$ for each $\alpha \in \Delta$. As each A_{α} is sequentially g-closed, $x \in A_{\alpha}$ for each $\alpha \in \Delta$. Thus, $x \in \bigcup_{\alpha \in \Delta} A_{\alpha}$ and so $[\bigcup_{\alpha \in \Delta} A_{\alpha}]_{g_{seq}} \subset \bigcup_{\alpha \in \Delta} A_{\alpha}$. By the definition of sequentially g-open, $\bigcup_{\alpha \in \Delta} A_{\alpha}$ is sequentially g-open in X.

DEFINITION 3.5. A nonempty subset A of a topological space (X, τ) is called sequentially g-connected if there are no nonempty and disjoint sequentially g-closed subsets U and V such that $A \subseteq U \cup V$, and $A \cap U$ and $A \cap V$ are nonempty. In particular, X is called sequentially g-connected if there are no nonempty, disjoint sequentially g-closed subsets of X whose union is X.

LEMMA 3.6. Let A be a sequentially g-connected subset of X. If U and V are nonempty disjoint sequentially g-closed subsets of X such that $A \subseteq U \cup V$, then either $A \subseteq U$ or $A \subseteq V$.

Proof. Suppose that $A \nsubseteq U$ and $A \nsubseteq V$. Now, $A \nsubseteq U$ implies that there exists an $x \in A$ such that $x \notin U$. Since $A \subseteq U \cup V$, $x \in V$ and so $A \cap V$ is not empty. Similarly, $A \nsubseteq V$ implies that $A \cap U$ is not empty. This contradiction completes the proof.

THEOREM 3.7. Let (X, τ) be a topological space and A is a sequentially g-connected subset of X, then $[A]_{q_{seq}}$ is also sequentially g-connected.

Proof. If $A\subseteq [A]_{g_{seq}}$, then $A\subseteq [A]_{g_{seq}}\cap A=[A]_{g|A_{seq}}$. On the other hand, $[A]_{g|A_{seq}}\subseteq A$. Therefore, $[A]_{g|A_{seq}}=A$, where $[A]_{g|A_{seq}}$ is the sequential g-closure of A in A. Conversely, suppose that $[A]_{g_{seq}}$ is not sequentially g-connected. So there are nonempty and disjoint sequentially g-closed subsets U and V of X such that $[A]_{g_{seq}}\subseteq U\cup V$ and $[A]_{g_{seq}}\cap U$ and $[A]_{g_{seq}}\cap V$ are nonempty. Since A is sequentially g-connected and by Lemma 3.6, either $A\subseteq U$ or $A\subseteq V$. If $A\subset U$, then $[A]_{g_{seq}}\subseteq [U]_{g_{seq}}$, and so $[A]_{g|A_{seq}}=[U]_{g_{seq}}\cap A$. Since U is sequentially g-closed in X, $[U]_{g_{seq}}=U$. So we have that $A=[A]_{g|A_{seq}}=U\cap A$, which implies that $A=A\cap U$. Similarly, if $A\subseteq V$, then $A=A\cap V$. This contradiction completes the proof.

THEOREM 3.8. Let $\{A_j \mid j \in I\}$ be a class of sequentially g-connected subsets of X. If $\bigcap_{j \in I} A_j \neq \emptyset$, then $\bigcup_{j \in I} A_j$ is sequentially g-connected.

Proof. Suppose that A is not sequentially g-connected, then there exist nonempty disjoint sequentially g-closed subsets U and V of X such that $A \subseteq U \cup V$. For each A_j is sequentially g-connected, by Lemma 3.6, either $A_j \subseteq U$ or $A_j \subseteq V$. If $A_j \subseteq U$ and $A_k \subseteq V$ for $j \neq k$, then $A_j \cap A_k = \emptyset$. Because $\bigcup_{j \in I} A_j$ is nonempty, for all $j \in I$, either $A_j \subseteq U$ or $A_j \subseteq V$. Therefore, either $A \subseteq U$ or $A \subseteq V$. If $A \subseteq U$, then $A = A \cap U$. If

 $A_j \subseteq U$ or $A_j \subseteq V$. Therefore, either $A \subseteq U$ or $A \subseteq V$. If $A \subseteq U$, then $A = A \cap U$. If $A \subseteq V$, then $A = A \cap V$, which is a contradiction. Thus, A is sequentially g-connected.

LEMMA 3.9. Let $f:(X,\tau)\to (Y,\sigma)$ be a sequentially g-continuous. If A is sequentially g-closed, then $f^{-1}(A)$ is sequentially g-closed.

Proof. Let $B = f^{-1}(A)$ and suppose that $x \in [B]_{g_{seq}}$. Then there is a sequence (x_n) such that $(x_n) \xrightarrow{g} x$. Since f is sequentially g-continuous, $(f(x_n)) \xrightarrow{g} f(x)$ and A is sequentially g-closed implies that $f(x) \in A$. But $x \in B$. Thus, $[B]_{g_{seq}} \subset B$ and so $x \in f^{-1}(A)$. Therefore, $f^{-1}(A)$ is sequentially g-closed.

COROLLARY 3.10. Let $f:(X,\tau)\to (Y,\sigma)$ be a sequentially g-continuous. If A is sequentially g-open, then $f^{-1}(A)$ is sequentially g-open.

Proof. It follows from by Lemma 3.9.

Theorem 3.11. A sequentially g-continuous image of any sequentially g-connected subset of X is sequentially g-connected.

Proof. Suppose that f(A) is not sequentially g-connected and let U and V be two disjoint sequentially g-closed subsets of X. Then f(A) can be covered as a union $U \cup V$ of nonempty, both meeting f(A). Since f is sequentially g-continuous, inverse image of a sequentially g-closed subset of X is sequentially g-closed, by Lemma 3.9 and so $f^{-1}(U)$ and $f^{-1}(V)$ are nonempty, disjoint sequentially g-closed subsets of X and cover A. It follows that A is not sequentially g-connected, which is a contradiction to our assumptions.

4. Sequentially q-connected components

In this section, we introduce a concept of sequentially g-connected component of a point x in X.

DEFINITION 4.1. The largest sequentially g-connected subset containing a point x in X is called sequentially g-connected component of x and denoted by C_{g_x} .

We note that C_{g_x} coincides with the ordinary sequentially connected component of x when $glim x_n = lim x_n$. We denote $\zeta(X_g)$ is the set of sequentially g-connected components of all points in X and similarly we denote $\zeta(A_g)$ is the set of all sequentially g-connected components of all points in a subset A.

LEMMA 4.2. Let (X, τ) be a topological space and let $x, y \in X$. If x and y are in a sequentially g-connected subset A of X, then x and y are in the same sequentially g-component of X.

Proof. Let x and y are in a sequentially g-connected subset A of X. Then $x, y \in A \subseteq C_{g_x}$ and $x, y \in A \subseteq C_{g_y}$. So $C_{g_x} \subseteq C_{g_y}$ and $C_{g_y} \subseteq C_{g_x}$. Therefore, $C_{g_x} = C_{g_y}$.

Lemma 4.3. The sequentially g-connected components of X form a partition of X.

Proof. It is clear that sequentially g-connected components form a cover of X. It is enough to prove that for $x,y\in X$ if the components C_{g_x} and C_{g_y} intersect, then $C_{g_x}=C_{g_y}$. Let $w\in C_{g_x}\cap C_{g_y}$. Since C_{g_w} is the largest sequentially g-connected subset including $w,w\in C_{g_x}\subseteq C_{g_w}$ and $w\in C_{g_y}\subseteq C_{g_z}$ On the other hand $C_{g_w}\subseteq C_{g_x}$ and $C_{g_w}\subseteq C_{g_w}$ incomplete $C_{g_x}\subseteq C_{g_w}$ and $C_{g_y}\subseteq C_{g_w}$. Therefore $C_{g_x}=C_{g_y}=C_{g_w}$. Hence the proof is completed.

DEFINITION 4.4. Let (X, τ) and (Y, σ) be two topological spaces. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be sequentially g-homeomorphic if it satisfies the following conditions.

- (a) f is bijection
- (b) f is sequentially g-continuous.

THEOREM 4.5. Let (X, τ) be a topological space and let A and B be subsets of X. If A and B are sequentially g-homeomorphic, then $\zeta(A_g)$ and $\zeta(B_g)$ have the same cardinality, that is, there exists a bijection between them.

Proof. Let $f:A\to B$ be a sequentially g-homeomorphism. Define a map $\zeta(f):\zeta(A_g)\to \zeta(B_g), \ f(C_{g_x})=C_{g_{f(x)}}$ induced by the function $f:A\to B$. Since f is sequentially g-continuous, the image of a sequentially g-connected subset is sequentially g-connected, by Theorem 3.11. Suppose that $y\in C_{g_x}$, then f(x) and f(y) are in the same sequentially g-connected component, by Lemma 4.2. So, $C_{g_{f(x)}}=C_{g_{f(y)}}$. Therefore, the map $\zeta(f)$ is well defined. Since f^{-1} is sequentially g-continuous and $C_{g_{f(x)}}=C_{g_{f(y)}}$, then sequentially g-connected components of x and y are same, that is $C_{g_x}=C_{g_y}$. Therefore, $\zeta(f)$ is injective. Further since $f(C_{g_x})=C_{g_y}$ with y=f(x), the map $\zeta(f)$ is onto.

THEOREM 4.6. Let (X, τ) be a topological space. Every sequentially g-connected component of a point x in X is sequentially g-closed.

Proof. Since the sequentially g-connected component C_{g_x} is sequentially g-connected and by Theorem 3.7, $[C_x]_{g_{seq}}$ is sequentially g-connected. Therefore, $C_{g_x} \subseteq [C_x]_{g_{seq}}$. But the largest sequentially g-connected subset containing x is C_{g_x} . Therefore, $[C_x]_{g_{seq}} \subseteq C_{g_x}$ and so C_{g_x} is sequentially g-closed.

DEFINITION 4.7. A topological space (X, τ) is said to be sequentially locally g-connected if for any g-neighborhood U of x, there is a sequentially g-connected neighborhood V of x such that $x \in V \subseteq U$.

The following Theorem 4.8 shows that if X is sequentially locally g-connected, then each sequentially g-connected component of X is sequentially g-open.

Theorem 4.8. X is sequentially locally g-connected if and only if sequentially g-connected components of any sequentially g-open subset are sequentially g-open .

Proof. Suppose that X be sequentially locally g-connected. Let A be a sequentially g-open subset of X, A is a sequentially connected component and $x \in C_{g_x}$. Since X is sequentially locally g-connected, there is a sequentially g-connected g-neighborhood U_x of x such that $U_x \subseteq A$. Since C_{g_x} is the largest sequentially g-connected subset of A containing x, we have that $x \in U_x \subseteq C_{g_x}$. Therefore, C_{g_x} is sequentially g-open, by Theorem 3.4. On the other hand, suppose that sequentially g-connected components of any sequentially g-open subset is sequentially g-open, then g becomes sequentially locally g-connected.

THEOREM 4.9. Let (X, τ) be a topological space and A, B be subsets of X. Let $f: A \to B$ be an onto, sequentially g-continuous and sequentially g-copen function. If A is sequentially locally g-connected, then B is also a sequentially locally g-connected.

Proof. Suppose that $f:A\to B$ be an onto function which is sequentially g-continuous and sequentially g-open. Let $a\in A$ and $b\in B$ such that f(a)=b, and let U be a sequentially g-neighborhood of b in B. Since f is sequentially g-continuous, by Corollary 3.10, $f^{-1}(U)$ is a sequentially g-neighborhood of a. Since A is sequentially g-local connected, there is a sequentially g-connected neighborhood of a such that $V\subseteq f^{-1}(U)$. This implies that $f(V)\subseteq U$. Since f is sequentially g-open, f(V) is sequentially g-connected. Therefore, g is also sequentially g-connected.

References

- [1] K. Balachandran, P. Sundaram and H. Maki, On Generalized continuous functions in topological spaces, Mem. Fac. Sci. Kochi Univ., 12(1991), 5–13.
- [2] M. Caldas and S. Jafari, *On g-US spaces*, Universitatea Din Bacau Studii Si Cercetari Stiintifice Seria: Matematica, **14** (2004), 13–20.
- [3] W. Dunham, A new closure operator for non- T_1 topologies, Kyungpook Math. J., **22** (1982), 55–60.
- [4] W. Dunham and N. Levine, Further results on generalized closed sets in topology, Kyungpook Math. J., **20** (1980), 169–175.
- [5] R. Engelking, General topology (revised and completed edition), Heldermann verlag, Berlin, 1989.
- [6] A. Fedeli and A. Le Donne, On good connected preimages, Topology Appl., 125 (2002), 489–496.
- [7] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19 (2) (1970), 89–96.
- [8] V. Renukadevi and P. Vijayashanthi, On *I-Fréchet-Urysohn spaces and sequential I-convergence groups*, Math. Moravica, **23** (1) (2019), 119–129.
- [9] P. Vijayashanthi, V. Renukadevi and B. Prakash, On countably s-Fréchet-Urysohn spaces, JCT:
 J. Compos. Theory, XIII (II) (2020), 969–976.

Palanichamy Vijayashanthi

Centre for Research and Post Graduate Studies in Mathematics, Ayya Nadar Janaki Ammal College, Sivakasi 626124, Tamilnadu, India.

E-mail: vijayashanthi26892@gmail.com