DOI QR코드

DOI QR Code

GLB1-related disorders: GM1 gangliosidosis and Morquio B disease

  • Cho, Sung Yoon (Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Jin, Dong-Kyu (Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine)
  • 투고 : 2021.05.04
  • 심사 : 2021.06.09
  • 발행 : 2021.06.30

초록

GLB1-related disorders comprise two phenotypically unique disorders: GM1 gangliosidosis and Morquio B disease. These autosomal recessive disorders are caused by b-galactosidase deficiency. A hallmark of GM1 gangliosidosis is central nervous system degeneration where ganglioside synthesis is highest. The accumulation of keratan sulfate is the suspected cause of the bone findings in Morquio B disease. GM1 gangliosidosis is clinically characterized by a neurodegenerative disorder associated with dysostosis multiplex, while Morquio B disease is characterized by severe skeletal manifestations and the preservation of intelligence. Morquio B disease and GM1 gangliosidosis may be on a continuum of skeletal involvement. There is currently no effective treatment for GLB1-related disorders. Recently, multiple interventions have been developed and there are several ongoing clinical trials.

키워드

과제정보

We wish to thank all of the individuals who are living with rare diseases, their families, and the clinical and research laboratory staff.

참고문헌

  1. Suzuki Y, Oshima A, Nanba E. β-Galactosidase deficiency (β-galactosidosis): GM1 gangliosidosis and Morquio B disease. In: Scriver CR, Beaudet AL, Valle D, Sly WS, eds. The metabolic and molecular bases of inherited disease. 8th ed. New York: McGraw-Hill, 2001;3775-809.
  2. Caciotti A, Donati MA, Bardelli T, d'Azzo A, Massai G, Luciani L, et al. Primary and secondary elastin-binding protein defect leads to impaired elastogenesis in fibroblasts from GM1-gangliosidosis patients. Am J Pathol 2005;167:1689-98. https://doi.org/10.1016/S0002-9440(10)61251-5
  3. Abumansour IS, Yuskiv N, Paschke E, Stockler-Ipsiroglu S. Morquio-B disease: clinical and genetic characteristics of a distinct GLB1-related dysostosis multiplex. JIMD Rep 2019;51:30-44. https://doi.org/10.1002/jmd2.12065
  4. Simonaro CM, D'Angelo M, Haskins ME, Schuchman EH. Joint and bone disease in mucopolysaccharidoses VI and VII: identification of new therapeutic targets and biomarkers using animal models. Pediatr Res 2005;57(5 Pt 1):701-7. https://doi.org/10.1203/01.PDR.0000156510.96253.5A
  5. Tessitore A, del P Martin M, Sano R, Ma Y, Mann L, Ingrassia A, et al. GM1-ganglioside-mediated activation of the unfolded protein response causes neuronal death in a neurodegenerative gangliosidosis. Mol Cell 2004;15:753-66. https://doi.org/10.1016/j.molcel.2004.08.029
  6. d'Azzo A, Tessitore A, Sano R. Gangliosides as apoptotic signals in ER stress response. Cell Death Differ 2006;13:404-14. https://doi.org/10.1038/sj.cdd.4401834
  7. Folkerth RD. Abnormalities of developing white matter in lysosomal storage diseases. J Neuropathol Exp Neurol 1999;58:887-902. https://doi.org/10.1097/00005072-199909000-00001
  8. van der Voorn JP, Kamphorst W, van der Knaap MS, Powers JM. The leukoencephalopathy of infantile GM1 gangliosidosis: oligodendrocytic loss and axonal dysfunction. Acta Neuropathol 2004;107:539-45. https://doi.org/10.1007/s00401-004-0848-9
  9. Brunetti-Pierri N, Scaglia F. GM1 gangliosidosis: review of clinical, molecular, and therapeutic aspects. Mol Genet Metab 2008;94:391-6. https://doi.org/10.1016/j.ymgme.2008.04.012
  10. Suzuki Y, Nanba E, Matsuda J, Higaki K, Oshima A. β-Galactosidase deficiency (β-Galactosidosis): GM1 gangliosidosis and Morquio B disease. In: Valle DL, Beaudet AL, Vogelstein, B, Kinzler KW, Antonarakis SE, Ballabio A, et al., eds. The online metabolic and molecular bases of inherited disease. New York: McGraw-Hill, 2014.
  11. Regier DS, Tifft CJ, Rothermel CE. GLB1-related disorders. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, eds. GeneReviews®. Seattle: University of Washington, 1993.
  12. Roze E, Paschke E, Lopez N, Eck T, Yoshida K, Maurel-Ollivier A, et al. Dystonia and Parkinsonism in GM1 type 3 gangliosidosis. Mov Disord 2005;20:1366-9. https://doi.org/10.1002/mds.20593
  13. Ferreira CR, Regier DS, Yoon R, Pan KS, Johnston JM, Yang S, et al. The skeletal phenotype of intermediate GM1 gangliosidosis: clinical, radiographic and densitometric features, and implications for clinical monitoring and intervention. Bone 2020;131:115142. https://doi.org/10.1016/j.bone.2019.115142
  14. Baiotto C, Sperb F, Matte U, da Silva CD, Sano R, Coelho JC, et al. Population analysis of the GLB1 gene in South Brazil. Genet Mol Biol 2011;34:45-8. https://doi.org/10.1590/S1415-47572011000100009
  15. Lee JS, Choi JM, Lee M, Kim SY, Lee S, Lim BC, et al. Diagnostic challenge for the rare lysosomal storage disease: late infantile GM1 gangliosidosis. Brain Dev 2018;40:383-90. https://doi.org/10.1016/j.braindev.2018.01.009
  16. Yang CF, Wu JY, Tsai FJ. Three novel beta-galactosidase gene mutations in Han Chinese patients with GM1 gangliosidosis are correlated with disease severity. J Biomed Sci 2010;17:79. https://doi.org/10.1186/1423-0127-17-79
  17. Ou L, Kim S, Whitley CB, Jarnes-Utz JR. Genotype-phenotype correlation of gangliosidosis mutations using in silico tools and homology modeling. Mol Genet Metab Rep 2019;20:100495. https://doi.org/10.1016/j.ymgmr.2019.100495
  18. Baehner F, Schmiedeskamp C, Krummenauer F, Miebach E, Bajbouj M, Whybra C, et al. Cumulative incidence rates of the mucopolysaccharidoses in Germany. J Inherit Metab Dis 2005;28:1011-7. https://doi.org/10.1007/s10545-005-0112-z
  19. Montano AM, Tomatsu S, Gottesman GS, Smith M, Orii T. International Morquio A Registry: clinical manifestation and natural course of Morquio A disease. J Inherit Metab Dis 2007;30:165-74. https://doi.org/10.1007/s10545-007-0529-7
  20. Hecht JT, Scott CI Jr, Smith TK, Williams JC. Mild manifestations of the Morquio syndrome. Am J Med Genet 1984;18:369-71. https://doi.org/10.1002/ajmg.1320180222
  21. Wraith JE. The mucopolysaccharidoses: a clinical review and guide to management. Arch Dis Child 1995;72:263-7. https://doi.org/10.1136/adc.72.3.263
  22. Tomatsu S, Montano AM, Oikawa H, Smith M, Barrera L, Chinen Y, et al. Mucopolysaccharidosis type IVA (Morquio A disease): clinical review and current treatment. Curr Pharm Biotechnol 2011;12:931-45. https://doi.org/10.2174/138920111795542615
  23. Bleier M, Yuskiv N, Priest T, Moisa Popurs MA, Stockler-Ipsiroglu S; BC Children's Hospital; University of British Columbia. Morquio B patient/caregiver survey: first insight into the natural course of a rare GLB1 related condition. Mol Genet Metab Rep 2018;16:57-63. https://doi.org/10.1016/j.ymgmr.2018.06.006
  24. Khan SA, Mason RW, Giugliani R, Orii K, Fukao T, Suzuki Y, et al. Glycosaminoglycans analysis in blood and urine of patients with mucopolysaccharidosis. Mol Genet Metab 2018;125:44-52. https://doi.org/10.1016/j.ymgme.2018.04.011
  25. Sohn YB, Park HD, Park SW, Kim SH, Cho SY, Ko AR, et al. A Korean patient with Morquio B disease with a novel c.13_14insA mutation in the GLB1 gene. Ann Clin Lab Sci 2012;42:89-93.
  26. Khan SA, Peracha H, Ballhausen D, Wiesbauer A, Rohrbach M, Gautschi M, et al. Epidemiology of mucopolysaccharidoses. Mol Genet Metab 2017;121:227-40. https://doi.org/10.1016/j.ymgme.2017.05.016
  27. Nelson J, Crowhurst J, Carey B, Greed L. Incidence of the mucopolysaccharidoses in Western Australia. Am J Med Genet A 2003;123A:310-3. https://doi.org/10.1002/ajmg.a.20314
  28. Stockler-Ipsiroglu S, Yazdanpanah N, Yazdanpanah M, Popurs MM, Yuskiv N, Schmitz Ferreira Santos ML, et al. Morquio-like dysostosis multiplex presenting with neuronopathic features is a distinct GLB1-related phenotype. JIMD Rep 2021, in press.
  29. Beck M, Petersen EM, Spranger J, Beighton P. Morquio's disease type B (beta-galactosidase deficiency) in three siblings. S Afr Med J 1987;72:704-7.
  30. Holzgreve W, Grobe H, von Figura K, Kresse H, Beck H, Mattei JF. Morquio syndrome: clinical findings in 11 patients with MPS IVA and 2 patients with MPS IVB. Hum Genet 1981;57:360-5. https://doi.org/10.1007/BF00281685
  31. Mayer FQ, Pereira Fdos S, Fensom AH, Slade C, Matte U, Giugliani R. New GLB1 mutation in siblings with Morquio type B disease presenting with mental regression. Mol Genet Metab 2009;96:148. https://doi.org/10.1016/j.ymgme.2008.11.159
  32. Paschke E, Milos I, Kreimer-Erlacher H, Hoefler G, Beck M, Hoeltzenbein M, et al. Mutation analyses in 17 patients with deficiency in acid beta-galactosidase: three novel point mutations and high correlation of mutation W273L with Morquio disease type B. Hum Genet 2001;109:159-66. https://doi.org/10.1007/s004390100570
  33. Front S, Biela-Banas A, Burda P, Ballhausen D, Higaki K, Caciotti A, et al. (5aR)-5a-C-Pentyl-4-epi-isofagomine: a powerful inhibitor of lysosomal b-galactosidase and a remarkable chaperone for mutations associated with GM1-gangliosidosis and Morquio disease type B. Eur J Med Chem 2017;126:160-70. https://doi.org/10.1016/j.ejmech.2016.09.095
  34. Higaki K, Li L, Bahrudin U, Okuzawa S, Takamuram A, Yamamoto K, et al. Chemical chaperone therapy: chaperone effect on mutant enzyme and cellular pathophysiology in β-galactosidase deficiency. Hum Mutat 2011;32:843-52. https://doi.org/10.1002/humu.21516
  35. Fantur KM, Wrodnigg TM, Stutz AE, Pabst BM, Paschke E. Fluorous iminoalditols act as effective pharmacological chaperones against gene products from GLB1 alleles causing GM1-gangliosidosis and Morquio B disease. J Inherit Metab Dis 2012;35:495-503. https://doi.org/10.1007/s10545-011-9409-2
  36. Takai T, Higaki K, Aguilar-Moncayo M, Mena-Barragan T, Hirano Y, Yura K, et al. A bicyclic 1-deoxygalactonojirimycin derivative as a novel pharmacological chaperone for GM1 gangliosidosis. Mol Ther 2013;21:526-32. https://doi.org/10.1038/mt.2012.263
  37. Front S, Almeida S, Zoete V, Charollais-Thoenig J, Gallienne E, Marmy C, et al. 4-epi-Isofagomine derivatives as pharmacological chaperones for the treatment of lysosomal diseases linked to β-galactosidase mutations: improved synthesis and biological investigations. Bioorg Med Chem 2018;26:5462-9. https://doi.org/10.1016/j.bmc.2018.09.023
  38. Mohamed FE, Al Sorkhy M, Ghattas MA, Al-Gazali L, Al-Dirbashi O, Al-Jasmi F, et al. The pharmacological chaperone N-n-butyl-deoxygalactonojirimycin enhances β-galactosidase processing and activity in fibroblasts of a patient with infantile GM1-gangliosidosis. Hum Genet 2020;139:657-73. https://doi.org/10.1007/s00439-020-02153-3
  39. Elliot-Smith E, Speak AO, Lloyd-Evans E, Smith DA, van der Spoel AC, Jeyakumar M, et al. Beneficial effects of substrate reduction therapy in a mouse model of GM1 gangliosidosis. Mol Genet Metab 2008;94:204-11. https://doi.org/10.1016/j.ymgme.2008.02.005
  40. Deodato F, Procopio E, Rampazzo A, Taurisano R, Donati MA, DionisiVici C, et al. The treatment of juvenile/adult GM1-gangliosidosis with Miglustat may reverse disease progression. Metab Brain Dis 2017;32:1529-36. https://doi.org/10.1007/s11011-017-0044-y
  41. Jarnes Utz JR, Kim S, King K, Ziegler R, Schema L, Redtree ES, et al. Infantile gangliosidoses: mapping a timeline of clinical changes. Mol Genet Metab 2017;121:170-9. https://doi.org/10.1016/j.ymgme.2017.04.011
  42. Fischetto R, Palladino V, Mancardi MM, Giacomini T, Palladino S, Gaeta A, et al. Substrate reduction therapy with Miglustat in pediatric patients with GM1 type 2 gangliosidosis delays neurological involvement: a multicenter experience. Mol Genet Genomic Med 2020;8:e1371.
  43. Weismann CM, Ferreira J, Keeler AM, Su Q, Qui L, Shaffer SA, et al. Systemic AAV9 gene transfer in adult GM1 gangliosidosis mice reduces lysosomal storage in CNS and extends lifespan. Hum Mol Genet 2015;24:4353-64. https://doi.org/10.1093/hmg/ddv168
  44. Latour YL, Yoon R, Thomas SE, Grant C, Li C, Sena-Esteves M, et al. Human GLB1 knockout cerebral organoids: a model system for testing AAV9-mediated GLB1 gene therapy for reducing GM1 ganglioside storage in GM1 gangliosidosis. Mol Genet Metab Rep 2019;21:100513. https://doi.org/10.1016/j.ymgmr.2019.100513
  45. Acosta W, Cramer CL. Targeting macromolecules to CNS and other hard-to-treat organs using lectin-mediated delivery. Int J Mol Sci 2020;21:971. https://doi.org/10.3390/ijms21030971
  46. Condori J, Acosta W, Ayala J, Katta V, Flory A, Martin R, et al. Enzyme replacement for GM1-gangliosidosis: uptake, lysosomal activation, and cellular disease correction using a novel β-galactosidase:RTB lectin fusion. Mol Genet Metab 2016;117:199-209. https://doi.org/10.1016/j.ymgme.2015.12.002
  47. Chen JC, Luu AR, Wise N, Angelis R, Agrawal V, Mangini L, et al. Intracerebroventricular enzyme replacement therapy with β-galactosidase reverses brain pathologies due to GM1 gangliosidosis in mice. J Biol Chem 2020;295:13532-55. https://doi.org/10.1074/jbc.ra119.009811
  48. Przybilla MJ, Stewart C, Carlson TW, Ou L, Koniar BL, Sidhu R, et al. Examination of a blood-brain barrier targeting β-galactosidasemonoclonal antibody fusion protein in a murine model of GM1-gangliosidosis. Mol Genet Metab Rep 2021;27:100748. https://doi.org/10.1016/j.ymgmr.2021.100748