DOI QR코드

DOI QR Code

한강 주요 하천의 겨울철 조류상 변화 장기 모니터링: 기존 생물다양성과 계통적 생물다양성 평가 및 비교

Wintering Avifauna Change Long-term Monitoring in Major Watershed Tributariesin Han River: Fundamental and Phylogenetic Biodiversity Assessment and Comparison

  • 윤성호 (경희대학교 생물학과.한국조류연구소) ;
  • 홍미진 (경희대학교 생물학과.한국조류연구소) ;
  • 최진환 (경희대학교 생물학과.한국조류연구소) ;
  • 이후승 (한국환경정책.평가연구원) ;
  • 유정칠 (경희대학교 생물학과.한국조류연구소)
  • Yun, Seongho (Department of Biology and Korea Institute of Ornithology, Kyung Hee University) ;
  • Hong, Mi-Jin (Department of Biology and Korea Institute of Ornithology, Kyung Hee University) ;
  • Choi, Jin-Hwan (Department of Biology and Korea Institute of Ornithology, Kyung Hee University) ;
  • Lee, Who-Seung (Korea Environment Institute) ;
  • Yoo, Jeong-Chil (Department of Biology and Korea Institute of Ornithology, Kyung Hee University)
  • 투고 : 2021.03.12
  • 심사 : 2021.06.07
  • 발행 : 2021.06.30

초록

개체수와 종수에 기초한 기존 생물다양성 평가와 달리, 계통적 다양성 평가는 계통유전적 다양성 및 생태적 다양성도 평가할 수 있다. 본 연구에서는 서울특별시 철새보호구역으로 지정되어 다년간의 생태모니터링이 용이한 한강의 주요 하천인 중랑천, 청계천 및 안양천의 지난 9년간의 겨울철 조류상 장기 모니터링 결과를 이용하여 기존의 다양성 평가와 계통적 다양성 평가를 각각 수행한 뒤 각 결과가 내포하는 정보에 대해 고찰했다. 분석결과 중랑천과 안양천은 전반적으로 조류 개체수가 시계열적으로 감소한 반면 청계천은 개체수 변동이 없었다. 종 풍부도는 청계천에서 시간에 따라 소폭 상승한 반면, 중랑천과 안양천은 연도별로 차이가 없었다. 기존 종 다양도는 안양천을 제외한 중랑천과 청계천에서 시간에 따라 증가했는데, 계통적 종 다양도는 청계천에서만 증가하는 추세를 보였다. 이러한 생물다양성 평가 지수의 변동은 각 조사구역 내에서 발생한 공사 등의 인위적 요인에 의한 것으로 판단되며, 종 다양도와 계통적 종 다양도는 같은 결과를 반영하지 않는다는 것을 보여준다. 따라서 본 연구는 생물다양성 평가에 있어 유전 및 생태적 관점과 같은 다양한 시각에서 고려할 필요가 있음을 시사한다.

Information on biodiversity plays an important role in conservation planning for ecosystem. As existing biodiversity indices are calculated and predicted only based on the number of individuals and species, it is difficult to explain aspects of genetic and ecological diversity. Phylogenetic diversity can indirectly evaluate ecological diversity as well as genetic diversity overlooked by existing biodiversity assessments. In this study, typical metrics of biodiversity (e.g., species diversity, species richness, etc.) and phylogenetic diversity were evaluated together using a long-term monitoring data of winter birds in Jungrang, Cheonggye and Anyang stream where are designated as Seoul migratory bird reserves. Then discussed the meaning of each assessmentresult. In Jungrang and Anyang stream, the number of individuals generally decreased overtime, whereas in Cheonggye stream, there was no significant change. In addition, species abundance increased over time slightly in Cheonggye stream, while there was no significant change in Jungrang and Anyang stream. Species diversity temporally increased in Jungrang and Cheonggye stream, excluding Anyang stream, but phylogenetic diversity showed a tendency to increase only in Cheonggye stream. These changes in the biodiversity assessment indices are thought to be due to anthropogenic disturbances such as construction that occurred within each site, and it was shown that species diversity and phylogenetic diversity do not always lead to the same assessment results. Therefore, this study suggests that biodiversity assessment needs to be considered from various contexts such as genetic and ecological perspectives.

키워드

과제정보

이 연구는 2020년도 KEI연구과제(RE2020-05) "생태정보학적 생물다양성 평가기술 개발(II)" 지원으로 연구되었습니다.

참고문헌

  1. Anderson MG, Rhymer JM, Rohwer FC. 1992. Philopatry, dispersal, and the genetic structure of waterfowl populations. In: Batt BDJ, Afton AD, Anderson MG, Ankney CD, Johnson DH, Kadlec JA, Krapu GL, editors. Ecology and management of breeding waterfowl. University of Minnesota Press, Minneapolis. pp. 365-395.
  2. Bibby CJ, Burgess ND, Hill DA, Mustoe S. 2000. Bird census techniques, 2nd ed. Academic Press, London.
  3. Bonn A, Gaston KJ. 2005. Capturing biodiversity: selecting priority areas for conservation using different criteria. Biodiversity and Conservation 14: 1083-1100. https://doi.org/10.1007/s10531-004-8410-6
  4. Cadotte MW, Davies TJ. 2016. Phylogenies in ecology: a guide to concepts and methods. Princeton University Press, New Jersey.
  5. CBD. 2010. COP 10 decision X/2, the strategic plan for biodiversity 2011-2020 and the Aichi biodiversity targets. Convention on Biological Diversity, Montreal.
  6. Chao A, Chiu C-H, Jost L. 2010. Phylogenetic diversity measures based on Hill numbers. Philosophical Transactions of the Royal Society B: Biological Sciences 365(1558): 3599-3609. https://doi.org/10.1098/rstb.2010.0272
  7. Clarke K, Warwick R. 2001. A further biodiversity index applicable to species lists: variation in taxonomic distinctness. Marine Ecology Progress Series 216: 265-278. https://doi.org/10.3354/meps216265
  8. Crozier R. 1997. Preserving the information content of species: genetic diversity, phylogeny, and conservation worth. Annual Review of Ecology and Systematics 28: 243-268. https://doi.org/10.1146/annurev.ecolsys.28.1.243
  9. Davies TJ, Buckley LB. 2011. Phylogenetic diversity as a window into the evolutionary and biogeographic histories of presentday richness gradients for mammals. Philosophical Transactions of the Royal Society B: Biological Sciences 366(1576): 2414-2425. https://doi.org/10.1098/rstb.2011.0058
  10. Davies TJ, Cadotte MW. 2011. Quantifying biodiversity: does it matter what we measure? In: Zachos FE, Habel JC, editors. Biodiversity hotspots. SpringerVerlag, Berlin, Heidelberg. pp.43-60.
  11. Devictor V, Mouillot D, Meynard C, Jiguet F, Thuiller W, Mouquet N. 2010. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecology Letters 13(8): 1030-1040. https://doi.org/10.1111/j.1461-0248.2010.01493.x
  12. Dugger BD, Feddersen JC. 2009. Using river flow management to improve wetland habitat quality for waterfowl on the Mississippi River, USA. Wildfowl 59: 62-74.
  13. Faith D. 1992. Conservation evaluation and phylogenetic diversity. Biological Conservation 61(1): 1-10. https://doi.org/10.1016/0006-3207(92)91201-3
  14. Fleishman E, Noss RF, Noon BR. 2006. Utility and limitations of species richness metrics for conservation planning. Ecological Indicators 6(3): 543-553. https://doi.org/10.1016/j.ecolind.2005.07.005
  15. Flynn DF, Mirotchnick N, Jain M, Palmer MI, Naeem S. 2011. Functional and phylogenetic diversity as predictors of biodiversity ecosystem function relationships. Ecology 92(8): 1573-1581. https://doi.org/10.1890/10-1245.1
  16. Gerhold P, Partel M, Liira J, Zobel K, Prinzing A. 2008. Phylogenetic structure of local communities predicts the size of the regional species pool. Journal of Ecology 96(4): 709-712. https://doi.org/10.1111/j.1365-2745.2008.01386.x
  17. Gotelli NJ, Colwell RK. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4(4): 379-391. https://doi.org/10.1046/j.1461-0248.2001.00230.x
  18. Greenwood PJ. 1980. Mating systems, philopatry and dispersal in birds and mammals. Animal Behaviour 28(4): 1140-1162. https://doi.org/10.1016/s0003-3472(80)80103-5
  19. Hackett SJ, Kimball RT, Reddy S, Bowie RC, Braun EL, Braun MJ, Chojnowski JL, Cox WA, Han K-L, Harshman J, Huddleston CJ, Marks BD, Miglia KJ, Moore WS, Sheldon FH, Steadman DW, Witt CC, Yuri T. 2008. A phylogenomic study of birds reveals their evolutionary history. Science 320(5884): 1763-1768. https://doi.org/10.1126/science.1157704
  20. Huang M, Liu X, Cadotte MW, Zhou S. 2020. Functional and phylogenetic diversity explain different components of diversity effects on biomass production. Oikos 129 (8): 1185-1195. https://doi.org/10.1111/oik.07032
  21. IPBES. 2019. Summary for Policymarkers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. p. 56.
  22. Jost L. 2006. Entropy and diversity. Oikos 113(2): 363-375. https://doi.org/10.1111/j.2006.0030-1299.14714.x
  23. Kang SH. 2007. The aassessment of urban stream ecosystem for ecological management: on the case of Cheonggye-cheon. Dissertation for the degree of Philosophy. Sangmyung University, Seoul.
  24. Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO. 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26(11): 1463-1464. https://doi.org/10.1093/bioinformatics/btq166
  25. Korea Meteorological Administration. 2017. Report on climate change forecast for Paris agreement in Seoul.
  26. Kwon Y, Rho T, Lee H, Choung H. 2006. An approach to introduce biodiversity components in the environmental assessment system in Korea. Korea Environment Institute, Seoul. [Korean Literature]
  27. Lawton JH, Bignell DE, Bolton B, Bloemers G, Eggleton P, Hammond PM, Hodda M, Holt R, Larsen T, Mawdsley N, Stork N, Srivastava D, Watt A. 1998. Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest. Nature 391(6662): 72-76. https://doi.org/10.1038/34166
  28. Leonard D, Clarke KR, Somerfield PJ, Warwick RM. 2006. The application of an indicator based on taxonomic distinctness for UK marine biodiversity assessments. Journal of Environmental Management 78(1): 52-62. https://doi.org/10.1016/j.jenvman.2005.04.008
  29. Magurran AE, McGill BJ. 2010. Biological diversity: frontiers in measurement and assessment. Oxford University Press. Oxford.
  30. Pavoine S, Love MS, Bonsall MB. 2009. Hierarchical partitioning of evolutionary and ecological patterns in the organization of phylogeneticallystructured species assemblages: application to rockfish (genus: Sebastes) in the Southern California Bight. Ecology Letters 12(9): 898-908. https://doi.org/10.1111/j.1461-0248.2009.01344.x
  31. R Core Team. 2017. R: A language and environment for statistical computing.
  32. Ricklefs RE, Jonsson KA. 2014. Clade extinction appears to balance species diversification in sister lineages of Afro-Oriental passerine birds. Proceedings of the National Academy of Sciences 111(32): 11756-11761. https://doi.org/10.1073/pnas.1411601111
  33. Riffell SK, Keas BE, Burton TM. 2001. Area and habitat relationships of birds in Great Lakes coastal wet meadows. Wetlands 21(4): 492-507. https://doi.org/10.1672/0277-5212(2001)021[0492:AAHROB]2.0.CO;2
  34. Robertson GJ, Cooke F. 1999. Winter philopatry in migratory waterfowl. Auk. 116(1): 20-34. https://doi.org/10.2307/4089450
  35. Rodrigues A, Brooks TM, Gaston K. 2005. Integrating phylogenetic diversity in the selection of priority areas for conservation: does it make a difference? In: Purvis A, Gittleman JL, Brooks TM, editors. Phylogeny and conservation. Cambridge University Press, Cambridge. pp. 101-119.
  36. Safi K, Cianciaruso MV, Loyola RD, Brito D, Armour-Marshall K, Diniz-Filho JAF. 2011. Understanding global patterns of mammalian functional and phylogenetic diversity. Philosophical Transactions of the Royal Society B: Biological Sciences 366 (1577): 2536-2544. https://doi.org/10.1098/rstb.2011.0024
  37. Shannon CE, Weaver W. 1949. The mathematical Theory of Communication. University of Illinois Press Urbana.
  38. Voskamp A, Baker DJ, Stephens PA, Valdes PJ, Willis SG. 2017. Global patterns in the divergence between phylogenetic diversity and species richness in terrestrial birds. Journal of Biogeography 44(4): 709-721. https://doi.org/10.1111/jbi.12916
  39. Wilson KA, Westphal MI, Possingham HP, Elith J. 2005. Sensitivity of conservation planning to different approaches to using predicted species distribution data. Biological Conservation 122(1): 99-112. https://doi.org/10.1016/j.biocon.2004.07.004