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Recent genetic advances allow for identification of the genetic etiologies of epilepsy within individual patients earlier and 
more frequently than ever. Specific targeted treatments have emerged from improvements in understanding of the underlying 
epileptogenic pathophysiology. These targeted treatment strategies include modifications of ion channels or other cellular re-
ceptors and their function, mechanistic target of rapamycin signaling pathways, and substitutive therapies in hereditary meta-
bolic epilepsies. In this review, we explore targeted treatments based on underlying pathophysiologic mechanisms in specific 
genetic epilepsies.
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Introduction

With scientific advances, understanding of epilepsies and 
their underlying mechanisms have evolved. Epilepsy is classified 
based on seizure type, epilepsy type, and epilepsy syndrome. 
Along with this classification, an etiologic diagnosis should be 
considered in each individual epilepsy patient at each step of di-
agnosis, as it often carries significant treatment implications [1]. 
In patients with developmental and epileptic encephalopathy, 
targeted gene panels commonly used in clinical settings pro-
vide identification of specific genetic etiologies. Increasing data 
about genetic epilepsy provide knowledge about phenotypes, 
prognosis, and targeted treatment of the epilepsy. This evolution 
of knowledge is shifting paradigms in epilepsy treatment from 
a population approach, based on epilepsy type or syndrome, to 
an individually targeted approach, based not only on epilepsy 

syndrome, but on the underlying pathophysiologic mechanism. 
In this review, we present the current state of this ongoing para-
digm shift and focus on specific genetic epilepsies with specific 
targeted treatments important for clinicians to know for proper 
disease management. 

Current Approaches to Genetic Epilepsy

Of the more than 100 genes implicated in epilepsy [2], most 
affect ion channels, cellular receptors, signaling pathways, or 
metabolic pathways [3]. Identification of these genes allowed 
for design of evidence-based treatment approaches to target 
these pathways within individual patients. Here, we review the 
genetic causes of epilepsy that have targeted treatments within 
each category (Table 1). 
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1. Modifying functions of ion channels or receptors

1) Sodium channel
SCN1A encodes the a1 subunit of the voltage-gated sodium 

channel Nav1.1 [4]. Dravet syndrome is caused by a de novo loss-
of-function mutation within SCN1A, which results in reduced 
sodium current in GABAergic interneurons [5,6]. As this muta-
tion increases overall excitability via reduced activity of inhibi-
tory interneurons, sodium channel blockers should be avoided in 
Dravet syndrome patients, including carbamazepine, lamotrig-
ine, and phenytoin [7]. Conversely, stripentol which increases 
GABAergic effect is recommended for use adding to valproic 
acid and clobazam [8]. 

Although the phenotype and treatment of Dravet syndrome 

have been well established, data for epilepsies associated with 
SCN2A and SCN8A only recently have increased. SCN2A en-
codes Nav1.2, the type II a-subunit of voltage-gated sodium 
channels [9]. In addition to benign familial neonatal/infantile 
seizures (BFNIS) [10], mutations of SCN2A cause developmental 
and epileptic encephalopathies (DEE) or intellectual disability 
and/or autism with/without epilepsy [11-14]. Phenotypes of 
DEE in SCN2A mutations include Ohtahara syndrome, West syn-
drome, epilepsy of infancy with migrating focal seizures (EIMFS), 
and unclassified severe epilepsy [11,12]. There are two distinct 
groups in SCN2A-related DEE. The first group is characterized 
by neonatal and early infantile-onset epilepsy (<3 months of 
age), missense mutations with gain-of-function effects, and a 
good response to sodium channel blockers. The second group is 

Table 1. Targeted therapies for genetic epilepsies
Gene Phenotype Specific target Targeted therapy Status of therapy

Sodium channel

   SCN1A Dravet syndrome Nav1.1 LoF Avoid SCBs Established

   SCN2A Ohtahara syndrome, West syndrome, EIMFS, 
onset <3 months of age, benign familial 
neonatal/infantile seizures

Nav1.2 GoF SCBs Potential

Seizures with autism, onset >3 months of age Nav1.2 LoF - -

   SCN8A Onset from neonate to 18 months with di-
verse seizure types including focal seizures, 
spasms or non-convulsive status epilepticus

Nav1.6 GoF SCBs Potential

Cognitive disability without epilepsy Nav1.6 LoF - -

Potassium channel

   KCNQ2 Ohtahara syndrome, neonatal onset focal 
seizures, benign familial neonatal epilepsy 

Kv7.2 LoF SCBs
Retigabine

Established
Potential

   KCNT1 EIMFS, nocturnal frontal lobe epilepsy Slack GoF Quinidine Potential

NMDA receptor

   GRIN2A Continuous spike-and-wave during sleep, 
Landau–Kleffner syndrome

NMDA GoF Memantine Hypothetical

NMDA LoF - -

   GRIN2B West syndrome, Lennox–Gastaut syndrome NMDA GoF Memantine Hypothetical

NMDA LoF - -

mTOR signaling pathways

   DEPDC5/NPRL2 /NPRL3 Familial focal epilepsy with variable foci, West 
syndrome

GATOR1 complex 
subunit

mTOR inhibitors Hypothetical

   TSC1/TSC2 Tuberous sclerosis, focal cortical dysplasia TSC1/TSC2 mTOR inhibitors Hypothetical

Glucose transporter

   SLC2A1 GLUT1 deficiency Glucose trans-
porter type 1

Ketogenic diet Established

Pyridoxine metabolic pathway

   ALDH7A1 Pyridoxine dependent epilepsy Pyridoxine meta-
bolic pathway

Pyridoxine Established

Status of therapies were assessed as follows:‘established’: in routine clinical use, ‘potential’: some case reports on its use in patients available, ‘hypothetical’: 
only based on theoretical considerations, data from animal models or single case reports in humans.
LoF, loss of function; SCB, sodium channel blocker; EIMFS, epilepsy of infancy with migrating focal seizures; GoF, gain of function; Slack, sodium-activated 
potassium channel subfamily T member 1; NMDA, N-methyl-D-aspartate; mTOR, mechanistic target of rapamycin; GATOR1, gap activity toward rags 1; 
TSC, tuberous sclerosis complex; GLUT1, glucose transporter 1; -, not available.  
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characterized by late infantile or childhood-onset epilepsy (>3 
months of age), loss-of-function mutations, mainly truncat-
ing mutations, and relatively poor response to sodium channel 
blockers [13]. Sodium channel blockers, including phenytoin, 
carbamazepine, oxcarbazepine, lamotrigine, and topiramate, are 
effective in treating neonatal and early infantile-onset SCN2A-
related DEE [11,12,15,16]. In contrast, sodium channel blockers 
proved either not effective, or even aggravated seizures, in pa-
tients with late infantile or childhood-onset DEE or intellectual 
disability and/or autism [13]. Sodium channel blockers were also 
effective in patients with BFNIS [13]. In deciding whether to 
treat patients with SCN2A-related epilepsy with a sodium chan-
nel blocker, clinicians should first identify the phenotype and 
next consider whether the variant might be gain-of-function or 
loss-of-function. 

SCN8A encodes the voltage-gated sodium channel Nav1.6, 
which plays a role in regulation of neuronal excitability in the 
brain [17]. SCN8A mutations present in a wide spectrum of 
epilepsy phenotypes, ranging from benign familial infantile 
epilepsy to severe DEE [18-23]. Also, SCN8A mutations associate 
with movement disorders including hypotonia, dystonia, cho-
reoathetosis, and ataxia in addition to sudden unexpected death 
in epilepsy patients [21,24-26]. First identified in 2012, SCN8A 
DEE, also known as early infantile epileptic encephalopathy type 
13, is defined as a severe developmental epileptic encephalopa-
thy syndrome caused by de novo gain-of-function mutations 
of SCN8A [27]. Onset of seizures in SCN8A DEE patients ranges 
from the neonatal period to 18 months of age. Focal seizures 
or spasms are predominant seizure types. They present West 
syndrome, neonatal status epilepticus, or non-convulsive status 
epilepticus [28]. As SCN8A DEE is caused by gain-of-function 
mutation, sodium channel blockers, such as phenytoin, carba-
mazepine, and oxcarbazepine, are effective for seizure control 
[18,28]. Recent studies showed benign epilepsy associates with 
intermediate gain-of-function SCN8A mutations, while severe 
epilepsy associates with severe gain-of-function mutations [29]. 
Furthermore, SCN8A mutations linked with cognitive disability 
without epilepsy are loss-of-function [29]. Pathophysiological 
considerations supported by clinical data suggest that sodium 
channel blockers are effective and should be considered as a 
treatment option in SCN8A DEE patients.

2) Potassium channel
KCNQ2 encodes the voltage-gated potassium channel sub-

unit Kv7.2. KCNQ2 mutations were traditionally identified in 
benign familial neonatal epilepsy (BFNE) which were autosomal 

dominantly inherited [30,31]. BFNE presents seizures during the 
first week after birth which remit spontaneously with normal 
development [31,32]. Recently, de novo KCNQ2 mutations have 
been identified in patients with neonatal DEE [33-40]. KCNQ2 
encephalopathy also presents with seizure onset during the first 
week after birth. However, these seizures are intractable, usu-
ally tonic, with burst suppression EEG pattern and accompany 
severe developmental delay [33-36,40]. Functional studies dem-
onstrate that KCNQ2 mutations seen in BFNE are haploinsuf-
ficient, whereas mutations in KCNQ2 encephalopathy are domi-
nant negative and result in a more severe reduction of channel 
current [31,41]. However, in rare cases, some KCNQ2 mutations 
in encephalopathy show an increase of channel current [42]. 

One targeted treatment approach for loss-of-function KCNQ2 
mutations is retigabine. Retigabine, first introduced as an add-
on therapy in focal epilepsy in adults, opens the voltage-gated 
potassium channel Kv7.2/Kv7.3 [43]. Retigabine attenuates 
seizures in knock-in mice with KCNQ2 mutations [44]. A recent 
study reported improvement of seizures and development in 
5 of 11 patients with KCNQ2 encephalopathy, 3 of 4 patients 
treated before the age of 6 months, and 2 of 7 patients treated 
at an older age [38]. Although successful in treating seizures, 
retigabine was withdrawn from the market because of serious 
side effects, such as loss of vision and blue discoloration of both 
the skin and retina [45]. Interestingly, clinical observations have 
suggested sodium channel blockers are effective against KCNQ2 
encephalopathy [35,36]. Numerous successful reports support 
the recommendation of sodium channel blockers as a first-line 
treatment in KCNQ2 encephalopathy [37]. A systemic review 
of 133 patients with KCNQ2 related BFNE and 84 patients with 
KCNQ2 encephalopathy determined that sodium channel 
blockers are appropriate for both groups and suggested that 
phenobarbital be considered in KCNQ2 related BFNE [46]. The 
therapeutic effect of sodium channel blockers against KCNQ2 
mutations could be explained by the colocalization of voltage-
gated sodium channels and KCNQ potassium channels on neu-
ronal membranes. The modulation of the sodium channel may 
significantly affect the function of the whole channel complex 
[37].

KCNT1 encodes the sodium-activated potassium channel 
subfamily T member 1, also called Slack. It is widely expressed 
in the frontal cortex and is responsible for slow hyperpolariza-
tion of neurons [47]. The clinical spectrum of KCNT1 mutations 
include autosomal dominant nocturnal frontal lobe epilepsy 
and EIMFS [47,48]. As the mutations of KCNT1 typically have 
gain-of-function effect [48,49], potassium channel blockers are 
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proposed as a treatment. Quinidine, an inhibitor of potassium 
channels including KCNT1, is used as an antiarrhythmic and 
antimalarial drug [50]. Clinical trials of quinidine showed mixed 
results. Some studies suggested significant seizure reduction 
but treatment failures were also reported [51-57]. Proposed 
explanations for the lack of response to treatment include low 
drug levels in the brain associated with interindividual variability 
in crossing the blood-brain barrier, limitations on dosage due to 
prolongation of QT interval, or other additional unrecognized 
pathophysiological factors [51,55]. Quinidine is a promising 
treatment option in some patients with KCNT1-related epilepsy, 
but further larger studies are necessary to clarify the effective-
ness. 

3) N-methyl-D-aspartate receptor
N-methyl-D-aspartate (NMDA) receptors are ligand-gated 

ion channels involved in fast excitatory neurotransmission and 
play a role in both synaptogenesis and synaptic plasticity [58]. 
GRIN2A and GRIN2B encode the GluN1 and GluN2 subunits of 
the NMDA receptor. Mutations in GRIN2A and GRIN2B present 
diverse neurologic or psychologic disorders including epilepsy, 
intellectual disability, autism spectrum disorder, attention-
deficit/hyperactivity disorder, and schizophrenia [58-61]. Epilep-
sies caused by GRIN2A mutations range from mild syndromes, 
such as childhood epilepsy with centrotemporal spikes, to severe 
syndromes, such as Landau–Kleffner syndrome or epileptic 
encephalopathy with continuous spike-and-wave during sleep 
[62]. Epilepsies caused by GRIN2B mutations include West 
syndrome, Lennox–Gastaut syndrome, and other DEE [58]. A 
functional study of a missense mutation of GRIN2A (c.2434C>A; 
p.L812M) revealed enhanced agonist potency; decreased 
sensitivity to negative modulators, including magnesium, pro-
tons, and zinc; prolonged synaptic response time course; and 
increased single-channel open probability. Taken together, the 
mutation causes overactivation of NMDA receptors and drives 
neuronal hyperexcitability [63]. Memantine, an NMDA-receptor 
antagonist approved for treating Alzheimer’s dementia, reduced 
seizure burden in a patient with a GRIN2A mutation (p.L812M) 
[64]. However, memantine use in another patient with a differ-
ent GRIN2A mutation (p.N615K) showed a contrasting result 
[64]. Therefore, specific electrophysiological evaluation of each 
GRIN2A mutation is needed to evaluate its response to NMDA-
receptor antagonists. 

2. �Modifying mechanistic target of rapamycin signaling 
pathways

Tuberous sclerosis complex (TSC) is an autosomal dominant 
disorder caused by loss-of-function mutations in one of two 
genes: TSC1 or TSC2. It affects multiorgan systems including 
tumors of the brain, skin, heart, lungs, and kidneys. The brain 
abnormalities include tubers and subependymal giant cell as-
trocytomas (SEGA). Multiple tubers cause intractable seizures, 
autism spectrum disorder, and intellectual disability [65]. The 
TSC protein complex acts as an inhibitor of the mechanistic tar-
get of rapamycin (mTOR) signaling pathway. The mTOR inhibitor, 
everolimus, is approved for the treatment of renal angiomyoli-
poma and SEGA [65]. Everolimus reduces both tumor size and 
seizure burden. Data from the EXIST-3 trial support that everoli-
mus leads to a significant seizure reduction in TSC patients with 
refractory epilepsy [66-68]. Furthermore, preventive antiepi-
leptic treatment in TSC patients is recommended to modify the 
natural history of epilepsy [69], as epilepsy develops in 70% to 
90% of TSC patients and is often resistant to medication. EPIS-
TOP, a clinical trial designed to compare preventive versus con-
ventional antiepileptic treatment in TSC infants, demonstrated 
that preventive treatment with vigabatrin was safe, modified 
the natural history of seizures in TSC, and reduced the risk and 
severity of epilepsy [69].

Germline loss-of-function mutations in DEPDC5  have 
emerged as a major cause of familial focal epilepsy with variable 
foci [70,71]. DEPDC5-related familial focal epilepsy also pres-
ent with focal cortical dysplasia (FCD) [72,73]. Recent studies 
demonstrate that the GATOR1 protein complex, comprised of 
DEPDC5, NPRL3, and NPRL2, plays a pivotal role in regulating 
mTOR signaling in response to cellular amino acid levels [74]. 
Additionally, mutations in DEPDC5, NPRL3, or NPRL2 are linked 
to FCD, hemimegalencephaly, and seizures [74]. Recent stud-
ies demonstrate that a biallelic 2-hit mutational mechanism in 
DEPDC5, defined as mutations in both somatic brain tissue and 
germline cells, causes focal epilepsy with FCD [75]. Furthermore, 
the role of the GATOR1 proteins in regulating mTOR signaling 
suggest possible options for mTOR inhibition in the treatment of 
epilepsy associated with mutations in DEPDC5, NPRL3, or NPRL2 
[74].

3. Substitutive therapies in inherited metabolic diseases
SLC2A1 encodes the glucose transporter, GLUT1, required to 

transport glucose across the blood-brain barrier. Mutations in 
SLC2A1 result in GLUT1 deficiency [76]. Classical GLUT1 defi-
ciency is characterized by early-onset severe developmental 
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delay with microcephaly and medication refractory seizures 
[77]. The current standard treatment for GLUT1 deficiency is the 
ketogenic diet, a high fat diet that raises levels of ketone bodies 
in the blood to make them available to the brain [78]. Therefore, 
the ketogenic diet provides an alternative energy supply to the 
brain. 

Pyridoxine-dependent epilepsy is an autosomal recessive dis-
ease caused by biallelic ALDH7A1 mutations. ALDH7A1 encodes 
the a-aminoadipic semialdehyde (a-AASA) dehydrogenase, a 
key enzyme in lysine oxidation [79]. ALDH7A1 mutations result 
in accumulation of pipecolic acid, a-AASA, and its cyclic equilib-
rium partner Δ1-piperideine-6-carboxylate (Δ1-P6C) [80]. The 
accumulated Δ1-P6C is postulated to bind the active vitamer 
of pyridoxine (pyridoxal 5’-phosphate) and cause pyridoxine-
dependent epilepsy [80]. Classical pyridoxine-dependent epi-
lepsy presents as neonatal-onset treatment-resistant seizures 
that dramatically respond to pharmacological dosages of pyri-
doxine. However, lifelong supplementation of pyridoxine fails to 
prevent the developmental and cognitive disabilities in >75% 
of patients with pyridoxine-dependent epilepsy [81,82]. The cur-
rent consensus guidelines recommend a lysine-restricted diet 
and competitive inhibition of lysine transport through the use 
of pharmacologic doses of arginine as an adjunct therapy with 
pyridoxine [80]. Triple therapy with pyridoxine, arginine and 
dietary lysine restriction is suggested to treat seizures and intel-
lectual disability [80].

Conclusion

We reviewed the current state of targeted treatment for epi-
lepsies based on underlying pathophysiologic mechanisms of 
specific genetic mutations. In epilepsies caused by pathogenic 
variants of genes that lead to a gain or loss of function of ion 
channels or receptors, therapies that modify the function of 
the ion channels or receptors have shown success. The pheno-
types caused by different mutations in the same gene can vary 
based on the function of the specific channels or receptors. For 
example, pathogenic gain-of-function mutations of SCN2A as-
sociate with early-onset DEE or BFNIS, whereas loss-of-function 
mutations of SCN2A associate with intellectual disability and/or 
autism or childhood-onset epilepsy. Successful therapies would 
increase channel conductance in patients with loss-of-function 
mutations or decrease channel conductance in patients with 
gain-of-function mutations. Modifications of the mTOR sig-
naling pathways target specific proteins associated with epi-
leptogenesis. Substitutive therapies treat hereditary metabolic 

diseases by supplying essential metabolites to compensate for 
defective metabolic pathways, such as use of the ketogenic diet 
in GLUT1 deficiency and pyridoxine in pyridoxine-dependent 
epilepsy.

The fundamental treatment goal of genetic epilepsies is either 
to correct the pathogenic variant of the gene or to modulate the 
expression of the mutated gene to compensate for the impact 
of the variant. Although gene therapy is not yet approved for 
clinical use, some preclinical studies have shown positive results 
using antisense oligonucleotides to decrease the function in a 
gain-of-function mutation of SCN8A and to increase Nav1.1 
function in Dravet syndrome [83,84].

The current treatment paradigm in genetic epilepsies is shift-
ing towards precision medicine and personalized treatment to 
target specific etiologies. Meeting this demand for precision 
medicine requires functional studies of individual patients with 
specific therapies.
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