SHAFIILE A HEHE| =27

Journal of The Korea Society of Computer and Information

J KS I Vol. 26 No. 6, pp. 89-96, June 2021
C https://doi.org/10.9708/jksci.2021.26.06.089

An Empirical Study on the Impact of Permission Smell

Android Applications

Zhigiang Wu*, Hakjin Lee*, Scott Uk-Jin Lee*

*Student, Dept. of Computer Science & Engineering, Hanyang University, Ansan, Korea
*Student, Dept. of Computer Science & Engineering, Hanyang University, Ansan, Korea
*Associate Professor, Dept. of Computer Science & Engineering, Hanyang University, Ansan, Korea

[Abstract]

In this paper, we proposed a sniffer to detect permission smells from developer and third-party
libraries' code. Moreover, we conducted an empirical study to investigate unnecessary permissions on
large real-world Android apps. Our analysis indicates that permission smell extensively exists in Android
apps. According to the results, permission smells exist in most Android apps. In particular, third-party
libraries request permission for functionalities that are not used by developers, which cause more smells.
Moreover, most developers do not properly disable unnecessary permissions that are declared for
third-party libraries. We discussed the impacts of permission smells on user experiences. As a result,
the existence of permission smell does not impact the number of downloads. However, apps that have

more unnecessary permissions have received lower ratings from users.

» Key words: Android, Code Smell, Permission, Empirical Study, Security Risk

(2 <]

J=ube] gholH el = Qlal] WAt Permission Smell
sl 1 Gkl s BA oz EA4FT olE A AA T2 SHo]l Z2Ed EA
3= Android & 3% it HolHAlS &8sto] EASHE Permission Smell®] FEFS A}
2 EAske A4 A5 FdEith AT Ao wEd givkare] k=Rol= <ol Permission
Smelle] =AatH 53] A=ty glolHejg= NEA7E AREeHA] e 7wl daiAE Adks
a7stE® o]Hd Smell 55 ©H Wol WA Eg ditkre] /At A=akE golH Y
g2 Qe Ml Ededh Agks SntEA v stk St s gtk oldd 4
= npgo g B =R A= Permission Smello] AFEAF 3ol v x]= ko tha] =2t} A
WA o Bded Ads a6ke fdoludts trE S Jks FA= Fdrh 1y

5

[¢]
EZa3 AE 7%k PES ARAERTE ¥ B2 ke ekt

[e]

=

B R A AL 4% e A
Elx [o=4
= —
o

» ZHOf: QIER0|E, = AW P AZY A, HOF U

7

 First Author: Zhigiang Wu, Corresponding Author: Scott Uk-Jin Lee
*Zhigiang Wu (wzg0515@hanyang.ac.kr), Dept. of Computer Science & Engineering, Hanyang University
*Hakjin Lee (gsdjini?1@hanyang.ac.kr), Dept. of Computer Science & Engineering, Hanyang University
*Scott Uk-Jin Lee (scottlee@hanyang.ac.kr), Dept. of Computer Science & Engineering, Hanyang University
* Received: 2021. 05. 11, Revised: 2021. 05. 26, Accepted: 2021. 05. 26.

Copyright © 2021 The Korea Society of Computer and Information
http://www ksci.re.kr pISSN:1598-849X | eISSN:2383-9945

90 Journal of The Korea Society of Computer and Information

I. Introduction

Android is the most popular mobile operating
system in April 2021, with 83.8% worldwide market
share [1]. With such an enormous user base,
developers eagerly publish more applications (apps
for short). As the official app market for Android
apps, Play Store has more than 2.98 million apps [2].

Despite the continuous increase of Android apps,
many apps still have quality issues due to bad
practices [3]. A code smell is a recurring code
pattern that causes software quality deterioration
such as and

maintainability, readability,

changeability [4]. In particular, Android apps
contain traditional Object-Oriented code smells but
also mobile-specific smells due to their framework
[6]. The most common smell in Android is
permission smell that indicates the app's manifest
file contains permissions that are not used [6].
More than 80% of Android apps over-claimed at
least one unnecessary permission in the manifest
file, which may expose users to additional security
risks [7]. To eliminate such smell, developers need
to remove corresponding permissions in the
manifest file whose associated APIs are not invoked
in the source code. Developers could not distinctly
seek out the invocation relationship between APIs
and permissions since APIs are not always
documented very well in the official documentation
[8]. Although the existing results are able to
analyze the wunnecessary permission in the
customized code from developers, they ignored a
critical issue: the unnecessary permissions from
Third-Party Libraries (TPLs). In general, developers
leverage the existing TPLs to achieve some trivial
which

access sensitive information.

functionalities, invoked permissions to
In order to enable
such libraries, the corresponding permissions
should be declared in the manifest. However, the
permissions for TPLs could not be handled
properly in practice, which causes security risks
and degrades the user experience.

Therefore, we conduct a static analysis to

identify the unnecessary permission smell for

Based on that,

occurrence frequency of such permissions on large

enabling TPLs. we discuss the
real-world Android apps from the Play Store. In

addition, we perform an empirical study to
investigate the impact of unnecessary permissions

in terms of user experience and security aspects.

Table 1. Statistic of Permissions in Android

Protection level # Permissions
Dangerous 30
Normal 51
Signature 97
Total 178

II. Preliminaries

1. Background

Permission mechanism. Android system provides
a permission mechanism to protect users' privacy.
Based on the privacy level of accessed data,
permissions are categorized into three classes:
normal, signature, and dangerous permissions. In
order to access the sensitive information and
hardware with built-in APIs, Android apps are
required to declare all needed permissions in the
AndroidManifest.xml file. For instance, if a given
app needs to access the privacy information by
APIs, APIs
corresponding permission is

have become callable when the
declared in the
manifest file. From Android 6, although users may
to disable
associated features, developers always claim more
than the
implemented features to accelerate development

grant/deny dangerous permissions

permissions actual demand of
[9]. Such over-claimed permissions may cause
additional security risks [10, 20]. Table 1 shows the
statistic of permissions in the Android 9. Normal
and signature permissions support the basic
features to app like internet connection, which may
These

automatically granted when wuser

not cause security issues. can be

installs it.
However, dangerous permissions allow app to
access sensitive information in order to provide
From Android 6,

various features. user are

An Empirical Study on the Impact of Permission Smell in Android Applications 91

required to approve/deny dangerous permissions
when the corresponding functionality is triggered at
the first time. According to previous study [9], 26
out of 30 dangerous permissions impacts users'
privacy, which are listed in Table 2.

Third-party library. A TPL is an external package
that contains a set of functionalities, which can be
reused by developers handily. In general, a TPL
depends on other external libraries, which requires
developers to install corresponding libraries as well.
In particular, TPL in the Android platform may
invoke APIs of permissions [11]. To reuse the
functionalities in the TPLs, developers have to
declare all permissions that are used in TPLs.
Otherwise, the undeclared permissions will cause
the the
functionalities are not called in the apps [12]. Zhang

runtime error even corresponding

et al. [2]1] indicate that over half of potential
malicious TPLs request excessive unnecessary
permissions as shown in Fig. 1. Over half of apps
request Phone, Location, and Storage permissions,
which can cause the leakage of privacy information.

100

80 - 76 75

60

Usage rate (%)

40

204

Fig. 1. Dangerous Permissions Used by TPLs

2. Related work

Most studies related to our work, focus on
detecting whether the associated API/URIs of
declared permissions in the manifest file are
invoked in the source code. Dennis et al. introduced
one bad permission practice [13]. When executing
code that requires dangerous permission, the API
check

whether the user has granted the corresponding

checkSelfPermission() are required to

permission for the app. Developers do not always

leverage this API to check it. If a user denied the
permissions, there is a high chance of the app
crashing without checking its grant. Wu et al. [6]
method to detect
permissions using a mapping between permissions

proposed a unnecessary
and APls. In addition, Xiao et al. [7] leveraged
collaborative filtering to recommend the minimum
permission set for each topic based on app
[14] the
functionalities from app descriptions to recommend

descriptions. Liu et al inferred
a set of permissions. Although these previous works
can either detect unnecessary permissions or
overcome this smell by analyzing relevant metadata,
they are only available to detect the smell in the
customized code without considering TPLs.

App Decompilation

4

Permission Retrieval

!

Smell Sniffier

Fig. 2. Procedure of Smell Sniffier

III. Permission Smell Detection

This section presents an approach to detect the
permission smells in both customized code and
TPLs. Fig. 2 shows the procedure of our approach.
The detailed process is described below.

1. Permission Retrieval

To detect the permission smells in apps, Android
Package Kit (apk) files
AndroGuard [15] to
AndroidManifest. xml file. The former file is used to

are decompiled by

obtain .dex and
hold a set of class definitions and associated
methods. The latter one is a mandatory file in the
Android app, which describes essential information

about the app such as permissions, activities,

92 Journal of The Korea Society of Computer and Information

package name, and so on. In general, the
permissions are declared in tag 'use-permission.'
We observed that some apps declare the dangerous
permissions with tag 'use-permission-sdk23' in the
latest Android versions. Therefore, our approach
leverages regular expression to extract all declared
permissions based on the above-mentioned tags. In
addition, declared permission could be disabled
with attribute node="remove", which is usually used
to prevent the permissions in TPLs. Such disabled
permissions satisfy the best permission practices
without introducing any security risk. In this case,
not consider them as

our approach does

permission smells. Finally, a set of declared

permissions are extracted from each app.

2. Permission Smell Sniffer

To detect the unnecessary permission smell, we
need to identify whether the sensitive APIs used in
the source code. However, the official documentation
has not published such mapping between APIs and
required permissions. In this study, we leverage an
existing APl mapping from PScout [16], which
contains 2,118 sensitive APIs in this work.

For a given Android apk file, the .dex file is
converted into smali code. To reduce searching
complexity, we only check a subset of API
mappings whose permissions are declared in the
manifest. Our approach leverages AndroGuard to
search the usages of APIs based on their packages,
methods, and parameters. In particular, some
permission only governs one field used in a general
API to achieve the corresponding features. In this
case, our approach further analyzes whether the
input argument is associated field. For instance,
Sensors class manages various sensors by type
codes in the Android system [17]. A sensor is called
when its corresponding field is passed to API
getDefaultSensor. Therefore, we only consider that
permission is used in the app if its field has been
passed to APIL

Once the permission is flagged as invoked, we

further track its sources to discover whether the

corresponding APIs are only invoked by TPLs. The
permission is determined as TPL smell if the APIs are
only invoked in the TPLs and the associated APIs in
TPLs are not called in the source code. Otherwise,
the permission is not considered in our study. In
addition, some permissions have been used in neither
app nor TPLs. In this case, our approach classifies
them to Unnecessary Permission (UP) smell.

Our sniffer works on top of several state-of-the-art
tools (i.e., AndroGuard, PScout) with Python script to
check whether the declared permissions are used in
the source code. Fig. 3 is a prototype screen for
Sharego Browser app. As a result, the developers of
this app correctly declared permissions for their own
code. However, the result indicates that developers
did not disable the excessive permissions from TPLs
(i.e., Contact permission). The experiments were
conducted on a desktop with an Intel Core i7-7700
processor and 32 GB RAM.

Git @ Problems

OoD0 B Terminal @ Python Console

Fig. 3. Prototype Screen

IV. Empirical Study

In this

unnecessary permission smell on large real-world

section, we empirically analyze
Android apps to answer the following research
questions.

RQ1:

prevalent in real-world apps, especially for DP?

How is wunnecessary permission smell

RQ2: Does unnecessary permission smell impact
the user experience? We leverage a statistical
approach to investigate the correlation between
smell and meta-data from users.

An Empirical Study on the Impact of Permission Smell in Android Applications 93

1. Dataset

This work randomly collected 12,169 Android
apps from AndroZoo [18], a weekly update Android
repository from various markets. In AndroZoo, an
app may occur multiple times with different version
codes. Thus, only the latest versions of apps are
collected in order to ensure the consistency
between apps and users' metadata. In addition, the
corresponding metadata is crawled from the Play
Store to investigate the impact of permission smell
on user experience.

There are 178 permissions in the Android system.
However, only 30 dangerous permissions out of them
provide associated APIs to threaten the security risks
for Android devices or users. We cherry-picked 26
out of them that access user privacy in our study.
The discussed permissions are categorized into 10
groups based on the permission grant mechanism
[19], as shown in Table 2.

Table 2. Discussed Permissions

Permission Groups Permission
Calendar READ_CALENDAR
WRITE_CALENDAR
READ_CONTACTS
Contacts WRITE_CONTACTS
GET_ACCOUNTS
Location ACCESS_FINE_LOCATION
ACCESS_COARSE_LOCATION
Storage WRITE_EXTERNAL_STORAGE
READ_EXTERNAL_STORAGE
Call Log READ_CALL_LOG
WRITE_CALL_LOG
Microphone RECORD_AUDIO
Camera CAMERA
READ_PHONE_STATE
READ_PHONE_NUMBERS
CALL_PHONE
Phone ANSWER_PHONE_CALLS
ADD_VOICEMAIL
USE_SIP
ACCEPT_HANGOVER
READ_SMS
RECEIVE_SMS
SMS RECEIVE_WAP_PUSH
SEND_SMS
RECEIVE_SMS
Sensors BODY_SENSORS

2. RQ1: The Prevalence of Permission Smell
To answer this research question, we analyzed
12,169 Android apps. As shown in Fig. 4, over half
of apps request at least one permission smell. More
10.47% of apps
permissions that have never been used in the
6,438 apps
(52.9%) applied at least one TPL in the source code.

specifically, claim excessive

source code with associated APIs.

However, only 824 apps completely invoked all
permissions that are used in TPLs. As we can see,
46.13% and 25.34% of apps contain DP smells and
UP smells due to the bad practices of permission
usages, respectively.

Both

14.87%

N UP smell
one 10.47%

31.26%

TPL smell

Fig. 4. Distribution of Permission Usages

As a result, the occurrences of unnecessary
permissions in the customized code less than TPLs
since developers may declare the permissions
based on their demands. For permission smells in
TPLs, we have checked all apps in our dataset to
whether disabled the
over-claimed permissions that only support TPLs.

confirm developers

Table 3 presents disable permissions in our

experiment. Overall, 6,438 apps in our dataset
totally declared 10,453 unnecessary permissions for
TPLs.

disabled such permissions in the manifest file using

Unfortunately, none of these apps has

a code node="remove" from our collected dataset.
Such permission smells from TPLs may cause more
security vulnerabilities since developers could not
realize all functionalities of TPLs.

94 Journal of The Korea Society of Computer and Information

Table 3. Unnecessary Permissions from TPLs

Type # Permissions
Disabled 0
Remained 10,453

Total 10,453

/.\/\/\J,\

0 1 2 3 4
of Smells

Fig. 5. Correlation between Permission Smells and Rating

3. RQ2: The Impact of Permission Smell

To answer this question, we empirically analyze
the correlation between the number of smells and
user feedback in terms of rating and the number of
downloads from the Play Store. To avoid bias of
data distribution, we removed some outliers based
on the following conditions: (1) apps that are
top-ranking in the market have tremendous

downloads, which causes a severe bias in
correlation analysis; (2) apps are rated by few
users, which may cause a cognitive bias: (3) the
meta-data is non-existence. After filtration, a total
of 8,396 apps and their metadata are applied to
explore this research question.

Downloads. Play Store provides an approximate
number of downloads rather than exact amounts
for each app, such as '10+' and '100,000+', which is
a typical discrete variable. Based on that, we
leveraged the Chi-squared test to verify whether
the number of permission smells in the apps
impacts user downloads. We set the confidence
p-value <0.05 to verify the correlation between
downloads and smells. However, the number of
downloads is not related to how many unnecessary

permission smells in the app.

Rating. Fig. 5 shows the relationship between the
number of smells and ratings. As we can see, the
apps have higher ratings if they do not contain
permission smell. With increasing the number of
permission smells in the apps, the apps that are
still rated with higher scores have become less,
which indicates that the users are aware of the
security threats while using apps.

V. Conclusions

In this study, we detected the unnecessary
permission smells in both customized code and
TPLs to reveal the security risks from third-party
libraries. In addition, we have conducted an
empirical analysis to discover the distribution of
permission smells on large real-world Android
apps. Our experimental analysis indicates that the
permission smells exist in over half of the apps in
our dataset. TPLs involve excessive permission
usages that developers may not use. Moreover, we
that

over-claimed permissions

observed developers only declared
in the manifest file
without correctly disabling them. Such permission
smell can make the app in the additional security
vulnerabilities. In addition, we also investigate the
impact of permission smells on user experience. As
a result, the permission smell in the app does not
impact whether users download it since users
cannot obtain enough knowledge about apps based
on app descriptions. Due to resource limitations, we
only applied a small portion of Android apps in our
study. Therefore, we could not investigate whether
apps with

permissions are removed from markets. However,

lower ratings and unnecessary
we found that the apps with higher scores and more
permission smell become less since users are aware
of the possible security threats after using apps
In the future study, we plan to build a tool for
developers to detect unnecessary permissions and
reveal their usages in the source code. It will assist
developers in refining the permissions usages in

the apps in order to avoid potential security risks.

An Empirical Study on the Impact of Permission Smell in Android Applications 95

ACKNOWLEDGEMENT

This work was supported by the National Res-
earch Foundation of Korea(NRF) grant funded by
the Korea government(MSIT) (NRF-2020R 1F1A107
6208).

REFERENCES

[1] Android Market Share, https://www.idc.com/promo/smartphone-
market-share/os

[2] AppBrain, https://www.appbrain.conystats/number-of-android-apps

[3] H. Wang, H. Li, L. Li, Y. Gao and G. Xu, "Why are Android
Apps Removed From Google Play? A Large-scale Empirical
Study," Proceedings of International Conference on Mining
Software Repository, pp. 231-242, 2018.

[4] H. Mumtaz, M. Alshayeb, S. Mahmood and M. Niazi, "An
Empirical Study to Improve Software Security Through the
Application of Code Refactoring,” Information and Software
Technology, vol. 96, pp. 112-125, Apr. 2018.

[5] K. Rahkema and D. Pfahl, “Empirical Study on Code Smells in
i0S Applications,” Proceedings of International Conference on
Mobile Software Engineering and Systems, pp. 61-65, 2020.

[6] Z. Wu, X. Chen and S. U.-J. Lee, "Permission Smells Detection
for IoT Applications on Android Platform," Proceeding of Korean
Computer Congress, pp. 293-295, 2019.

[7] J. Xiao, S. Chen, Q. He, Z. Feng and X. Xue, "An Android
Application Risk Evaluation Framework Based on Minimum
Permission Set Identification," Journal of Systems and Software,
vol. 163, pp. 110533, May 2020.

[8] C. Lyvas, C. Lambrinoudakis and D. Geneiatakis, "Dyperm- in:
Dynamic permission mining framework for android platform,"
Computer & Security, vol. 77, pp. 472-487, Aug. 2018.

[9] Z. Wu, X. Chen, S. U.-J. Lee, "FCDP: Fidelity Calculation for
Description-to-Permissions in Android Apps," IEEE Access, vol.
9, pp. 1062-1075, Jan. 2021.

[10] L. Yu, X. Luo, C. Qian, S. Wang and H. K. N. Leung, "Enhancing
the Description-to-Behavior Fidelity in Android Apps with
Privacy Policy," IEEE Transactions on Software Engineering, vol.
44, no. 9, pp. 834-854, Jul. 2017.

[11] T. Watanabe, M. Akiyama, T. Sakai, H. Washizaki and T. Mori,
"Understanding the Inconsistency between Behaviors and

of Mobile Apps,"
Information and Systems, vol. 101, no. 11, pp. 2584-2599, Nov.
2018.

[12] C. Zhang, H. Wang, R. Wang, Y. Guo and G. Xu, “Re-checking

Descriptions IEICE Transactions on

App Behavior against App Description in the Context of
Third-party Libraries,” Proceeding of International Conference on
Software Engineering and Knowledge Engineering , 2018. DOIL:
10.18293/SEKE2018-1 80

[13] C. Dennis and D. E. Krutz, "P-Lint: A Permission Smell Detector
for Android Applications," of [EEE/ACM
International Conference on Mobile Software Engineering and
Systems, pp. 219-220, 2017.

[14] X. Liu, Y. Leng, Y. Yang and C. Zhai, "Mining Android App
Descriptions for Permission Requirements Recommendation,"
Proceeding of 2018 IEEE 26th International Requirements
Engineering Conference (RE), pp. 147-158, 2018.

[15] AndroGuard, https://github.com/androguard/androguard

[16] K. W. Y. Au, Y. Zhou, Z. Huang and D. Lie, "PScout: Analyzing
the Android Permission Specification," Proceedings of the 2012

Proceeding

ACM conference on Computer and Communications Security, pp.
217-228, 2012.

[17] Android Sensors, https://developer.android.com/reference/androi
d/hardware/SensorManager

[18] K. Allix, T. Bissyande, J. Klein and Y. L. Traon, "AndroZoo:
Collecting Millions of Android Apps
Community," Proceedings of International Conference on Mining
Software Repositories, pp. 468-471, 2016.

[19] P. Calciati, K. Kuznetsov, A. Gorla and A. Zeller, "Automatically
Granted Permissions in Android Apps," Proceedings of the 17th
International Conference on Mining Software Repositories, pp.
114-124, 2020.

[20] M. Ghafari and P. Gadient, "Security Smells in Android,"
Proceeding of 2017 IEEE 17th International Conference on
Source Code Analysis and Manipulation, pp. 121-130, 2017.

[21] Z. Zhang, W. Diao, C. Hu, S. Guo, C. Zuo and L. Li, "An
Empirical Study of Potentially Malicious Third-Party Libraries
in Android Apps," Proceeding of ACM Conference on Security
and Privacy in Wireless and Mobile Networks, pp. 144-154,
2020.

for the Research

96 Journal of The Korea Society of Computer and Information

Authors

Zhigiang Wu received the B.S. in computer

science from Shanghai Polytechnic Univ. in

2015. He also received M.S. degree from
Hanyang University in 2017. Currently, he is

pursuing the Ph.D. degree in computer

science with the Dept. of Computer Science & Engineering,
Hanyang University, Ansan, South Korea. His research
interests include Android apps analysis, code smells on

security and software refactoring on mobile apps.

h Hakjin Lee received the B.S. degree in

Computer Science and Engineering from

Hanyang University, Korea, in 2017. He is

currently a attending Integrated Master's and
‘? . Doctorate Course in the Department of
<

Computer Science, Hanyang University. He is interested in
SW Smell, Quality Assurance.

Scott Uk-Jin Lee received the B.S. degree in
software engineering and the Ph.D. degree in

computer science from University of

Auckland, New Zealand. He was a
! &str Post-Doctoral Research Fellow at the

Commissariat a D’énergieatomique et aux énergies
alternatives, France. He is currently serving as Associate
Professor of the Department of Computer Science and
Engineering, Major in Bio Artificial Intelligence. His
research interests include software engineering, formal
methods, and quality assurance. He is also a member of the
Korean Institute of Information Scientists and Engineers and
the Korean Society of Computer and Information. He has
served as an editor, the technical chair, and a committee

member for several journals and conferences.

