
JKSCI
한국컴퓨터정보학회논문지

Journal of The Korea Society of Computer and Information

Vol. 26 No. 6, pp. 89-96, June 2021

https://doi.org/10.9708/jksci.2021.26.06.089

An Empirical Study on the Impact of Permission Smell in

Android Applications

1)Zhiqiang Wu*, Hakjin Lee*, Scott Uk-Jin Lee*

*Student, Dept. of Computer Science & Engineering, Hanyang University, Ansan, Korea

*Student, Dept. of Computer Science & Engineering, Hanyang University, Ansan, Korea

*Associate Professor, Dept. of Computer Science & Engineering, Hanyang University, Ansan, Korea

[Abstract]

In this paper, we proposed a sniffer to detect permission smells from developer and third-party

libraries' code. Moreover, we conducted an empirical study to investigate unnecessary permissions on

large real-world Android apps. Our analysis indicates that permission smell extensively exists in Android

apps. According to the results, permission smells exist in most Android apps. In particular, third-party

libraries request permission for functionalities that are not used by developers, which cause more smells.

Moreover, most developers do not properly disable unnecessary permissions that are declared for

third-party libraries. We discussed the impacts of permission smells on user experiences. As a result,

the existence of permission smell does not impact the number of downloads. However, apps that have

more unnecessary permissions have received lower ratings from users.

▸Key words: Android, Code Smell, Permission, Empirical Study, Security Risk

[요 약]

본 논문에서는 개발자가 작성한 코드와 써드파티 라이브러리로 인해 발생하는 Permission Smell

을 탐지하여 그 영향에 대해 다각적으로 분석했다. 이를 위해서 실제 구글 플레이 스토어에 존재

하는 Android 앱로 구성된 대규모 데이터셋을 활용하여 존재하는 Permission Smell의 영향을 조사

및 분석하는 실증적 연구를 수행하였다. 연구 결과에 따르면 대다수의 안드로이드 앱에 Permission

Smell이 존재하며 특히 써드파티 라이브러리는 개발자가 사용하지 않는 기능에 대해서도 권한을

요구하므로 이러한 Smell 들을 더 많이 발생시킨다. 또한, 대다수의 개발자는 써드파티 라이브러

리로 인해 선언된 불필요한 권한을 올바르게 비활성화하지 않는다는 것을 파악하였다. 이러한 결

과를 바탕으로 본 논문에서는 Permission Smell이 사용자 경험에 미치는 영향에 대해 논의한다. 결

과적으로 불필요한 권한을 요구하는 앱이더라도 다운로드 횟수에 영향을 주지는 않았다. 그러나

불필요한 권한을 요구하는 앱들은 사용자들로부터 더 낮은 평가를 받았다.

▸주제어: 안드로이드, 코드 스멜, 권한, 실증적 연구, 보안 위험

∙First Author: Zhiqiang Wu, Corresponding Author: Scott Uk-Jin Lee
 *Zhiqiang Wu (wzq0515@hanyang.ac.kr), Dept. of Computer Science & Engineering, Hanyang University
 *Hakjin Lee (gsdjini91@hanyang.ac.kr), Dept. of Computer Science & Engineering, Hanyang University
 *Scott Uk-Jin Lee (scottlee@hanyang.ac.kr), Dept. of Computer Science & Engineering, Hanyang University
∙Received: 2021. 05. 11, Revised: 2021. 05. 26, Accepted: 2021. 05. 26.

Copyright ⓒ 2021 The Korea Society of Computer and Information
 http://www.ksci.re.kr pISSN:1598-849X | eISSN:2383-9945

90 Journal of The Korea Society of Computer and Information

I. Introduction

Android is the most popular mobile operating

system in April 2021, with 83.8% worldwide market

share [1]. With such an enormous user base,

developers eagerly publish more applications (apps

for short). As the official app market for Android

apps, Play Store has more than 2.98 million apps [2].

Despite the continuous increase of Android apps,

many apps still have quality issues due to bad

practices [3]. A code smell is a recurring code

pattern that causes software quality deterioration

such as maintainability, readability, and

changeability [4]. In particular, Android apps

contain traditional Object-Oriented code smells but

also mobile-specific smells due to their framework

[5]. The most common smell in Android is

permission smell that indicates the app's manifest

file contains permissions that are not used [6].

More than 80% of Android apps over-claimed at

least one unnecessary permission in the manifest

file, which may expose users to additional security

risks [7]. To eliminate such smell, developers need

to remove corresponding permissions in the

manifest file whose associated APIs are not invoked

in the source code. Developers could not distinctly

seek out the invocation relationship between APIs

and permissions since APIs are not always

documented very well in the official documentation

[8]. Although the existing results are able to

analyze the unnecessary permission in the

customized code from developers, they ignored a

critical issue: the unnecessary permissions from

Third-Party Libraries (TPLs). In general, developers

leverage the existing TPLs to achieve some trivial

functionalities, which invoked permissions to

access sensitive information. In order to enable

such libraries, the corresponding permissions

should be declared in the manifest. However, the

permissions for TPLs could not be handled

properly in practice, which causes security risks

and degrades the user experience.

Therefore, we conduct a static analysis to

identify the unnecessary permission smell for

enabling TPLs. Based on that, we discuss the

occurrence frequency of such permissions on large

real-world Android apps from the Play Store. In

addition, we perform an empirical study to

investigate the impact of unnecessary permissions

in terms of user experience and security aspects.

Protection level # Permissions

Dangerous 30

Normal 51

Signature 97

Total 178

Table 1. Statistic of Permissions in Android

II. Preliminaries

1. Background

Permission mechanism. Android system provides

a permission mechanism to protect users' privacy.

Based on the privacy level of accessed data,

permissions are categorized into three classes:

normal, signature, and dangerous permissions. In

order to access the sensitive information and

hardware with built-in APIs, Android apps are

required to declare all needed permissions in the

AndroidManifest.xml file. For instance, if a given

app needs to access the privacy information by

APIs, APIs have become callable when the

corresponding permission is declared in the

manifest file. From Android 6, although users may

grant/deny dangerous permissions to disable

associated features, developers always claim more

permissions than the actual demand of

implemented features to accelerate development

[9]. Such over-claimed permissions may cause

additional security risks [10, 20]. Table 1 shows the

statistic of permissions in the Android 9. Normal

and signature permissions support the basic

features to app like internet connection, which may

not cause security issues. These can be

automatically granted when user installs it.

However, dangerous permissions allow app to

access sensitive information in order to provide

various features. From Android 6, user are

An Empirical Study on the Impact of Permission Smell in Android Applications 91

required to approve/deny dangerous permissions

when the corresponding functionality is triggered at

the first time. According to previous study [9], 26

out of 30 dangerous permissions impacts users'

privacy, which are listed in Table 2.

Third-party library. A TPL is an external package

that contains a set of functionalities, which can be

reused by developers handily. In general, a TPL

depends on other external libraries, which requires

developers to install corresponding libraries as well.

In particular, TPL in the Android platform may

invoke APIs of permissions [11]. To reuse the

functionalities in the TPLs, developers have to

declare all permissions that are used in TPLs.

Otherwise, the undeclared permissions will cause

the runtime error even the corresponding

functionalities are not called in the apps [12]. Zhang

et al. [21] indicate that over half of potential

malicious TPLs request excessive unnecessary

permissions as shown in Fig. 1. Over half of apps

request Phone, Location, and Storage permissions,

which can cause the leakage of privacy information.

Fig. 1. Dangerous Permissions Used by TPLs

2. Related work

Most studies related to our work, focus on

detecting whether the associated API/URIs of

declared permissions in the manifest file are

invoked in the source code. Dennis et al. introduced

one bad permission practice [13]. When executing

code that requires dangerous permission, the API

checkSelfPermission() are required to check

whether the user has granted the corresponding

permission for the app. Developers do not always

leverage this API to check it. If a user denied the

permissions, there is a high chance of the app

crashing without checking its grant. Wu et al. [6]

proposed a method to detect unnecessary

permissions using a mapping between permissions

and APIs. In addition, Xiao et al. [7] leveraged

collaborative filtering to recommend the minimum

permission set for each topic based on app

descriptions. Liu et al. [14] inferred the

functionalities from app descriptions to recommend

a set of permissions. Although these previous works

can either detect unnecessary permissions or

overcome this smell by analyzing relevant metadata,

they are only available to detect the smell in the

customized code without considering TPLs.

Fig. 2. Procedure of Smell Sniffier

III. Permission Smell Detection

This section presents an approach to detect the

permission smells in both customized code and

TPLs. Fig. 2 shows the procedure of our approach.

The detailed process is described below.

1. Permission Retrieval

To detect the permission smells in apps, Android

Package Kit (apk) files are decompiled by

AndroGuard [15] to obtain .dex and

AndroidManifest.xml file. The former file is used to

hold a set of class definitions and associated

methods. The latter one is a mandatory file in the

Android app, which describes essential information

about the app such as permissions, activities,

92 Journal of The Korea Society of Computer and Information

package name, and so on. In general, the

permissions are declared in tag 'use-permission.'

We observed that some apps declare the dangerous

permissions with tag 'use-permission-sdk23' in the

latest Android versions. Therefore, our approach

leverages regular expression to extract all declared

permissions based on the above-mentioned tags. In

addition, declared permission could be disabled

with attribute node="remove", which is usually used

to prevent the permissions in TPLs. Such disabled

permissions satisfy the best permission practices

without introducing any security risk. In this case,

our approach does not consider them as

permission smells. Finally, a set of declared

permissions are extracted from each app.

2. Permission Smell Sniffer

To detect the unnecessary permission smell, we

need to identify whether the sensitive APIs used in

the source code. However, the official documentation

has not published such mapping between APIs and

required permissions. In this study, we leverage an

existing API mapping from PScout [16], which

contains 2,118 sensitive APIs in this work.

For a given Android apk file, the .dex file is

converted into smali code. To reduce searching

complexity, we only check a subset of API

mappings whose permissions are declared in the

manifest. Our approach leverages AndroGuard to

search the usages of APIs based on their packages,

methods, and parameters. In particular, some

permission only governs one field used in a general

API to achieve the corresponding features. In this

case, our approach further analyzes whether the

input argument is associated field. For instance,

Sensors class manages various sensors by type

codes in the Android system [17]. A sensor is called

when its corresponding field is passed to API

getDefaultSensor. Therefore, we only consider that

permission is used in the app if its field has been

passed to API.

Once the permission is flagged as invoked, we

further track its sources to discover whether the

corresponding APIs are only invoked by TPLs. The

permission is determined as TPL smell if the APIs are

only invoked in the TPLs and the associated APIs in

TPLs are not called in the source code. Otherwise,

the permission is not considered in our study. In

addition, some permissions have been used in neither

app nor TPLs. In this case, our approach classifies

them to Unnecessary Permission (UP) smell.

Our sniffer works on top of several state-of-the-art

tools (i.e., AndroGuard, PScout) with Python script to

check whether the declared permissions are used in

the source code. Fig. 3 is a prototype screen for

Sharego Browser app. As a result, the developers of

this app correctly declared permissions for their own

code. However, the result indicates that developers

did not disable the excessive permissions from TPLs

(i.e., Contact permission). The experiments were

conducted on a desktop with an Intel Core i7-7700

processor and 32 GB RAM.

Fig. 3. Prototype Screen

IV. Empirical Study

In this section, we empirically analyze

unnecessary permission smell on large real-world

Android apps to answer the following research

questions.

RQ1: How is unnecessary permission smell

prevalent in real-world apps, especially for DP?

RQ2: Does unnecessary permission smell impact

the user experience? We leverage a statistical

approach to investigate the correlation between

smell and meta-data from users.

An Empirical Study on the Impact of Permission Smell in Android Applications 93

1. Dataset

This work randomly collected 12,169 Android

apps from AndroZoo [18], a weekly update Android

repository from various markets. In AndroZoo, an

app may occur multiple times with different version

codes. Thus, only the latest versions of apps are

collected in order to ensure the consistency

between apps and users' metadata. In addition, the

corresponding metadata is crawled from the Play

Store to investigate the impact of permission smell

on user experience.

There are 178 permissions in the Android system.

However, only 30 dangerous permissions out of them

provide associated APIs to threaten the security risks

for Android devices or users. We cherry-picked 26

out of them that access user privacy in our study.

The discussed permissions are categorized into 10

groups based on the permission grant mechanism

[19], as shown in Table 2.

Permission Groups Permission

Calendar
READ_CALENDAR

WRITE_CALENDAR

Contacts

READ_CONTACTS

WRITE_CONTACTS

GET_ACCOUNTS

Location
ACCESS_FINE_LOCATION

ACCESS_COARSE_LOCATION

Storage
WRITE_EXTERNAL_STORAGE

READ_EXTERNAL_STORAGE

Call Log
READ_CALL_LOG

WRITE_CALL_LOG

Microphone RECORD_AUDIO

Camera CAMERA

Phone

READ_PHONE_STATE

READ_PHONE_NUMBERS

CALL_PHONE

ANSWER_PHONE_CALLS

ADD_VOICEMAIL

USE_SIP

ACCEPT_HANGOVER

SMS

READ_SMS

RECEIVE_SMS

RECEIVE_WAP_PUSH

SEND_SMS

RECEIVE_SMS

Sensors BODY_SENSORS

Table 2. Discussed Permissions

2. RQ1: The Prevalence of Permission Smell

To answer this research question, we analyzed

12,169 Android apps. As shown in Fig. 4, over half

of apps request at least one permission smell. More

specifically, 10.47% of apps claim excessive

permissions that have never been used in the

source code with associated APIs. 6,438 apps

(52.9%) applied at least one TPL in the source code.

However, only 824 apps completely invoked all

permissions that are used in TPLs. As we can see,

46.13% and 25.34% of apps contain DP smells and

UP smells due to the bad practices of permission

usages, respectively.

Fig. 4. Distribution of Permission Usages

As a result, the occurrences of unnecessary

permissions in the customized code less than TPLs

since developers may declare the permissions

based on their demands. For permission smells in

TPLs, we have checked all apps in our dataset to

confirm whether developers disabled the

over-claimed permissions that only support TPLs.

Table 3 presents disable permissions in our

experiment. Overall, 6,438 apps in our dataset

totally declared 10,453 unnecessary permissions for

TPLs. Unfortunately, none of these apps has

disabled such permissions in the manifest file using

a code node="remove" from our collected dataset.

Such permission smells from TPLs may cause more

security vulnerabilities since developers could not

realize all functionalities of TPLs.

94 Journal of The Korea Society of Computer and Information

Type # Permissions

Disabled 0

Remained 10,453

Total 10,453

Table 3. Unnecessary Permissions from TPLs

Fig. 5. Correlation between Permission Smells and Rating

3. RQ2: The Impact of Permission Smell

To answer this question, we empirically analyze

the correlation between the number of smells and

user feedback in terms of rating and the number of

downloads from the Play Store. To avoid bias of

data distribution, we removed some outliers based

on the following conditions: (1) apps that are

top-ranking in the market have tremendous

downloads, which causes a severe bias in

correlation analysis; (2) apps are rated by few

users, which may cause a cognitive bias; (3) the

meta-data is non-existence. After filtration, a total

of 8,396 apps and their metadata are applied to

explore this research question.

Downloads. Play Store provides an approximate

number of downloads rather than exact amounts

for each app, such as '10+' and '100,000+', which is

a typical discrete variable. Based on that, we

leveraged the Chi-squared test to verify whether

the number of permission smells in the apps

impacts user downloads. We set the confidence

p-value <0.05 to verify the correlation between

downloads and smells. However, the number of

downloads is not related to how many unnecessary

permission smells in the app.

Rating. Fig. 5 shows the relationship between the

number of smells and ratings. As we can see, the

apps have higher ratings if they do not contain

permission smell. With increasing the number of

permission smells in the apps, the apps that are

still rated with higher scores have become less,

which indicates that the users are aware of the

security threats while using apps.

V. Conclusions

In this study, we detected the unnecessary

permission smells in both customized code and

TPLs to reveal the security risks from third-party

libraries. In addition, we have conducted an

empirical analysis to discover the distribution of

permission smells on large real-world Android

apps. Our experimental analysis indicates that the

permission smells exist in over half of the apps in

our dataset. TPLs involve excessive permission

usages that developers may not use. Moreover, we

observed that developers only declared

over-claimed permissions in the manifest file

without correctly disabling them. Such permission

smell can make the app in the additional security

vulnerabilities. In addition, we also investigate the

impact of permission smells on user experience. As

a result, the permission smell in the app does not

impact whether users download it since users

cannot obtain enough knowledge about apps based

on app descriptions. Due to resource limitations, we

only applied a small portion of Android apps in our

study. Therefore, we could not investigate whether

apps with lower ratings and unnecessary

permissions are removed from markets. However,

we found that the apps with higher scores and more

permission smell become less since users are aware

of the possible security threats after using apps

In the future study, we plan to build a tool for

developers to detect unnecessary permissions and

reveal their usages in the source code. It will assist

developers in refining the permissions usages in

the apps in order to avoid potential security risks.

An Empirical Study on the Impact of Permission Smell in Android Applications 95

ACKNOWLEDGEMENT

This work was supported by the National Res-

earch Foundation of Korea(NRF) grant funded by

the Korea government(MSIT) (NRF-2020R1F1A107

6208).

REFERENCES

[1] Android Market Share, https://www.idc.com/promo/smartphone-

market-share/os

[2] AppBrain, https://www.appbrain.com/stats/number-of-android-apps

[3] H. Wang, H. Li, L. Li, Y. Gao and G. Xu, "Why are Android

Apps Removed From Google Play? A Large-scale Empirical

Study," Proceedings of International Conference on Mining

Software Repository, pp. 231-242, 2018.

[4] H. Mumtaz, M. Alshayeb, S. Mahmood and M. Niazi, "An

Empirical Study to Improve Software Security Through the

Application of Code Refactoring,” Information and Software

Technology, vol. 96, pp. 112-125, Apr. 2018.

[5] K. Rahkema and D. Pfahl, “Empirical Study on Code Smells in

iOS Applications,” Proceedings of International Conference on

Mobile Software Engineering and Systems, pp. 61-65, 2020.

[6] Z. Wu, X. Chen and S. U.-J. Lee, "Permission Smells Detection

for IoT Applications on Android Platform," Proceeding of Korean

Computer Congress, pp. 293-295, 2019.

[7] J. Xiao, S. Chen, Q. He, Z. Feng and X. Xue, "An Android

Application Risk Evaluation Framework Based on Minimum

Permission Set Identification," Journal of Systems and Software,

vol. 163, pp. 110533, May 2020.

[8] C. Lyvas, C. Lambrinoudakis and D. Geneiatakis, "Dyperm- in:

Dynamic permission mining framework for android platform,"

Computer & Security, vol. 77, pp. 472-487, Aug. 2018.

[9] Z. Wu, X. Chen, S. U.-J. Lee, "FCDP: Fidelity Calculation for

Description-to-Permissions in Android Apps," IEEE Access, vol.

9, pp. 1062-1075, Jan. 2021.

[10] L. Yu, X. Luo, C. Qian, S. Wang and H. K. N. Leung, "Enhancing

the Description-to-Behavior Fidelity in Android Apps with

Privacy Policy," IEEE Transactions on Software Engineering, vol.

44, no. 9, pp. 834-854, Jul. 2017.

[11] T. Watanabe, M. Akiyama, T. Sakai, H. Washizaki and T. Mori,

"Understanding the Inconsistency between Behaviors and

Descriptions of Mobile Apps," IEICE Transactions on

Information and Systems, vol. 101, no. 11, pp. 2584-2599, Nov.

2018.

[12] C. Zhang, H. Wang, R. Wang, Y. Guo and G. Xu, “Re-checking

App Behavior against App Description in the Context of

Third-party Libraries,” Proceeding of International Conference on

Software Engineering and Knowledge Engineering , 2018. DOI:

10.18293/SEKE2018-1 80

[13] C. Dennis and D. E. Krutz, "P-Lint: A Permission Smell Detector

for Android Applications," Proceeding of IEEE/ACM

International Conference on Mobile Software Engineering and

Systems, pp. 219-220, 2017.

[14] X. Liu, Y. Leng, Y. Yang and C. Zhai, "Mining Android App

Descriptions for Permission Requirements Recommendation,"

Proceeding of 2018 IEEE 26th International Requirements

Engineering Conference (RE), pp. 147-158, 2018.

[15] AndroGuard, https://github.com/androguard/androguard

[16] K. W. Y. Au, Y. Zhou, Z. Huang and D. Lie, "PScout: Analyzing

the Android Permission Specification," Proceedings of the 2012

ACM conference on Computer and Communications Security, pp.

217-228, 2012.

[17] Android Sensors, https://developer.android.com/reference/androi

d/hardware/SensorManager

[18] K. Allix, T. Bissyande, J. Klein and Y. L. Traon, "AndroZoo:

Collecting Millions of Android Apps for the Research

Community," Proceedings of International Conference on Mining

Software Repositories, pp. 468-471, 2016.

[19] P. Calciati, K. Kuznetsov, A. Gorla and A. Zeller, "Automatically

Granted Permissions in Android Apps," Proceedings of the 17th

International Conference on Mining Software Repositories, pp.

114-124, 2020.

[20] M. Ghafari and P. Gadient, "Security Smells in Android,"

Proceeding of 2017 IEEE 17th International Conference on

Source Code Analysis and Manipulation, pp. 121-130, 2017.

[21] Z. Zhang, W. Diao, C. Hu, S. Guo, C. Zuo and L. Li, "An

Empirical Study of Potentially Malicious Third-Party Libraries

in Android Apps," Proceeding of ACM Conference on Security

and Privacy in Wireless and Mobile Networks, pp. 144-154,

2020.

96 Journal of The Korea Society of Computer and Information

Authors

Zhiqiang Wu received the B.S. in computer

science from Shanghai Polytechnic Univ. in

2015. He also received M.S. degree from

Hanyang University in 2017. Currently, he is

pursuing the Ph.D. degree in computer

science with the Dept. of Computer Science & Engineering,

Hanyang University, Ansan, South Korea. His research

interests include Android apps analysis, code smells on

security and software refactoring on mobile apps.

Hakjin Lee received the B.S. degree in

Computer Science and Engineering from

Hanyang University, Korea, in 2017. He is

currently a attending Integrated Master's and

Doctorate Course in the Department of

Computer Science, Hanyang University. He is interested in

SW Smell, Quality Assurance.

Scott Uk-Jin Lee received the B.S. degree in

software engineering and the Ph.D. degree in

computer science from University of

Auckland, New Zealand. He was a

Post-Doctoral Research Fellow at the

Commissariat à l’énergieatomique et aux énergies

alternatives, France. He is currently serving as Associate

Professor of the Department of Computer Science and

Engineering, Major in Bio Artificial Intelligence. His

research interests include software engineering, formal

methods, and quality assurance. He is also a member of the

Korean Institute of Information Scientists and Engineers and

the Korean Society of Computer and Information. He has

served as an editor, the technical chair, and a committee

member for several journals and conferences.

