DOI QR코드

DOI QR Code

Caspofungin combined with hormones as preemptive therapy of chemotherapy-induced disseminated candidiasis in a patient

  • Yali, Liang (Chinese Herbal Department, The Shunde Affiliated Hospital to Guangzhou University of Chinese Medicine) ;
  • Zhichao, Qiu (Chinese Herbal Department, The Shunde Affiliated Hospital to Guangzhou University of Chinese Medicine) ;
  • Yaohe, Li (Hematology department, the First Affiliated Hospital to Guangzhou University of Chinese Medicine) ;
  • Anping, Liu (Hematology department, the First Affiliated Hospital to Guangzhou University of Chinese Medicine) ;
  • Zhixiong, Chen (Hematology department, the First Affiliated Hospital to Guangzhou University of Chinese Medicine) ;
  • Huliwen, Huliwen (Hematology department, the First Affiliated Hospital to Guangzhou University of Chinese Medicine) ;
  • man, Luo (Hematology department, the First Affiliated Hospital to Guangzhou University of Chinese Medicine) ;
  • jing, He (Hematology department, the First Affiliated Hospital to Guangzhou University of Chinese Medicine) ;
  • Xiaoyang, Xiaoyang (Cell Translational Medicine center, The Second Affiliated hospital, Guangzhou Medical University) ;
  • Hai, Lan (Chinese Herbal Department, The Shunde Affiliated Hospital to Guangzhou University of Chinese Medicine)
  • 투고 : 2021.02.11
  • 심사 : 2021.05.22
  • 발행 : 2021.06.25

초록

Disseminated candidiasis (DC) arising from nosocomial fungal infection is a life-threatening complication in critically ill, nonneutropenic patients. The overall nosocomial fungal infection rate in United States hospitals doubled from 1980-1990. Until recently, amphotericin B was the only agent available for the treatment of life-threatening candidal infections, but its use is plagued by toxicities including nephrotoxicity and infusion-related reactions such as rigors and hypotension. The availability of fluconazole, which is regarded more much less toxic than amphotericin B, prompted a surge in research to determine if it is as efficacious in the management of candidemia and hematogenously disseminated candidiasis. Complicating the interpretation of studies is the broad range of infection severity, from candidemia that may be transient and self-limiting to life-threatening hematogenously disseminated candidiasis. This study has used the models of Artificial neural network (ANN) and Support Vector regression (SVR) to accurately assess the clinical trials comparing fluconazole and amphotericin B demonstrate the efficacy of fluconazole for catheter-associated candidemia in critically ill patients when the likely pathogen is Candida albicans. As a result, Amphotericin B should remain the first-line agent for the management of candidemia and hematogenously disseminated candidiasis in all other patients. Also, SVR could accurately assess the efficacy of fluconazole for catheter-associated candidemia in critically ill patients.

키워드

참고문헌

  1. Abdelkader, B., El-Hadj, K. and Karim, E. (2010), "Efficiency of granulated blast furnace slag replacement of cement according to the equivalent binder concept", Cement Concrete Comp., Int. J., 32(3), 226-231. https://doi.org/10.1016/j.cemconcomp.2009.11.004.
  2. Al-Furjan, M., Habibi, M., Ghabussi, A., Safarpour, H., Safarpour, M. and Tounsi, A. (2021a), "Non-polynomial framework for stress and strain response of the FG-GPLRC disk using three-dimensional refined higher-order theory", Eng. Struct., 228, 111496. https://doi.org/10.1016/j.engstruct.2020.111496.
  3. Al-Furjan, M., Habibi, M., Shan, L. and Tounsi, A. (2021b), "On the vibrations of the imperfect sandwich higher-order disk with a lactic core using generalize differential quadrature method", Compos. Struct., 257, 113150. https://doi.org/10.1016/j.compstruct.2020.113150.
  4. Chelgani, S.C., Shahbazi, B. and Rezai, B. (2010), "Estimation of froth flotation recovery and collision probability based on operational parameters using an artificial neural network", Int. J. Miner. Metall. Mater., 17(5), 526-534. https://doi.org/10.1007/s12613-010-0353-1.
  5. Cortes, C. and Vapnik, V. (1995), "Support-vector networks", Mach. Learn., 20(3), 273-297. https://doi.org/10.1007/BF00994018.
  6. Deng, Z.-h., Yin, H.-q., Jiang, X., Zhang, C., Zhang, G.-f., Xu, B., Yang, G.-q., Zhang, T., Wu, M. and Qu, X.-h. (2020), "Machine-learning-assisted prediction of the mechanical properties of Cu-Al alloy", Int. J. Miner. Metall. Mater., 27(3), 362-373. https://doi.org/10.1007/s12613-019-1894-6.
  7. Fazaeli, A., Habibi, M. and Ekrami, A.A. (2016), "Experimental and finite element comparison of mechanical properties and formability of dual phase steel and ferrite-pearlite steel with the same chemical composition", Metall, Eng., 19(2), 84-93. https://doi.org/10.22076/ME.2017.41458.1064.
  8. Ghabussi, A., Marnani, J.A. and Rohanimanesh, M.S. (2020), "Improving seismic performance of portal frame structures with steel curved dampers", Structures, 24, 27-40. https://doi.org/10.1016/j.istruc.2019.12.025.
  9. Ghabussi, A., Marnani, J.A. and Rohanimanesh, M.S. (2021), "Seismic performance assessment of a novel ductile steel braced frame equipped with steel curved damper", Structures, 31, 87-97. https://doi.org/10.1016/j.istruc.2021.01.073.
  10. Ghazanfari, A., Soleimani, S.S., Keshavarzzadeh, M., Habibi, M., Assempuor, A. and Hashemi, R. (2020), "Prediction of FLD for sheet metal by considering through-thickness shear stresses", Mech. Based Des. Struct., 48(6), 755-772. https://doi.org/10.1080/15397734.2019.1662310.
  11. Guo, Y., Mi, H. and Habibi, M. (2021), "Electromechanical energy absorption, resonance frequency, and low-velocity impact analysis of the piezoelectric doubly curved system", Mech. Syst. Signal Pr., 157, 107723. https://doi.org/10.1016/j.ymssp.2021.107723.
  12. Habibi, M., Ghazanfari, A., Asempour, A., Naghdabadi, R. and Hashemi, R. (2016a), "Determination of forming limit diageram using two modified finit element models", Amirkabir J. Mech. Eng., 48(4), 379-388. https://doi.org/10.22060/mej.2016.664.
  13. Habibi, M., Hashemi, R., Sadeghi, E., Fazaeli, A., Ghazanfari, A. and Lashini, H. (2016b), "Enhancing the mechanical properties and formability of low carbon steel with dual-phase microstructures", J. Mater. Eng. Perform., 25(2), 382-389. https://doi.org/10.1007/s11665-016-1882-1.
  14. Habibi, M., Hashemi, R., Ghazanfari, A., Naghdabadi, R. and Assempour, A. (2018a), "Forming limit diagrams by including the M-K model in finite element simulation considering the effect of bending", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 232(8), 625-636. https://doi.org/10.1177/1464420716642258.
  15. Habibi, M., Hashemi, R., Tafti, M.F. and Assempour, A. (2018b), "Experimental investigation of mechanical properties, formability and forming limit diagrams for tailor-welded blanks produced by friction stir welding", J. Manuf. Proc., 31, 310-323. https://doi.org/10.1016/j.jmapro.2017.11.009.
  16. Habibi, M., Hashemabadi, D. and Safarpour, H. (2019a), "Vibration analysis of a high-speed rotating GPLRC nanostructure coupled with a piezoelectric actuator", Eur. Phys. J. Plusi. 134(6), 1-23. https://doi.org/10.1140/epjp/i2019-12742-7.
  17. Habibi, M., Mohammadgholiha, M. and Safarpour, H. (2019b), "Wave propagation characteristics of the electrically GNPreinforced nanocomposite cylindrical shell", J. Brazil. Soc. Mech. Sci. Eng., 41(5), 1-15. https://doi.org/10.1007/s40430-019-1715-x.
  18. Habibi, M., Mohammadi, A., Safarpour, H. and Ghadiri, M. (2019c), "Effect of porosity on buckling and vibrational characteristics of the imperfect GPLRC composite nanoshell", Mech. Based Des. Struct., 1-30. https://doi.org/10.1080/15397734.2019.1701490.
  19. Habibi, M., Mohammadi, A., Safarpour, H., Shavalipour, A. and Ghadiri, M. (2019d), "Wave propagation analysis of the laminated cylindrical nanoshell coupled with a piezoelectric actuator", Mech. Based Des. Struct., 1-19. https://doi.org/10.1080/15397734.2019.1697932.
  20. Habibi, M., Taghdir, A. and Safarpour, H. (2019e), "Stability analysis of an electrically cylindrical nanoshell reinforced with graphene nanoplatelets", Compos. Part B-Eng., 175, 107125. https://doi.org/10.1016/j.compositesb.2019.107125.
  21. Habibi, M., Safarpour, M. and Safarpour, H. (2020), "Vibrational characteristics of a FG-GPLRC viscoelastic thick annular plate using fourth-order Runge-Kutta and GDQ methods", Mech. Based Des. Struct., 1-22. https://doi.org/10.1080/15397734.2019.1697932.
  22. Hu, Q., Zhang, W., Yin, Q., Wang, Y. and Wang, H. (2021), "A conjugated fluorescent polymer sensor with amidoxime and polyfluorene entities for effective detection of uranyl ion in real samples", Spectrochim. Acta A, 244, 118864. https://doi.org/10.1016/j.saa.2020.118864.
  23. Huang, X., Zhang, Y., Moradi, Z. and Shafiei, N. (2021a), "Computer simulation via a couple of homotopy perturbation methods and the generalized differential quadrature method for nonlinear vibration of functionally graded non-uniform microtube", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-021-01395-7.
  24. Huang, X., Zhu, Y., Vafaei, P., Moradi, Z. and Davoudi, M. (2021b), "An iterative simulation algorithm for large oscillation of the applicable 2D-electrical system on a complex nonlinear substrate", Eng. Comput., 1-13. https://doi.org/10.1007/s00366-021-01320-y.
  25. Hussain, M., Wajid, S.K., Elzaart, A. and Berbar, M. (2011), "A comparison of SVM kernel functions for breast cancer detection", Proceedings of the 8th International Conference Computer Graphics, Imaging and Visualization, IEEE. https://doi.org/10.1109/CGIV.2011.31.
  26. Jiang, D., Chen, F.-X., Zhou, H., Lu, Y.-Y., Tan, H., Yu, S.-J., Yuan, J., Liu, H., Meng, W. and Jin, Z.-B. (2020), "Bioenergetic crosstalk between mesenchymal stem cells and various ocular cells through the intercellular trafficking of mitochondria", Theranostics, 10(16), 7260. https://doi.org/10.7150/thno.46332.
  27. Jiang, D., Wang, F., Lv, Z., Mumtaz, S., Al-Rubaye, S., Tsourdos, A. and Dobre, O. (2021), "QoE-aware efficient content distribution scheme for satellite-terrestrial networks", IEEE T. Mobile Comput. https://doi.org/10.1109/TMC.2021.3074917.
  28. Jiao, J., Ghoreishi, S.-m., Moradi, Z. and Oslub, K. (2021), "Coupled particle swarm optimization method with genetic algorithm for the static-dynamic performance of the magneto-electro-elastic nanosystem", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-021-01391-x.
  29. Katebi, J., Shoaei-parchin, M., Shariati, M., Trung, N.-T. and Khorami, M. (2019), "Developed comparative analysis of metaheuristic optimization algorithms for optimal active control of structures", Eng. Comput., 1-20. https://doi.org/10.1007/s00366-019-00780-7.
  30. Li, J., Cheng, J.-h., Shi, J.-y. and Huang, F. (2012), "Brief introduction of back propagation (BP) neural network algorithm and its improvement", In Advances in Computer Science and Information Engineering (pp. 553-558), Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30223-7_87.
  31. Li, Y., Qiao, L. and Lv, Z. (2021), "An optimized byzantine fault tolerance algorithm for consortium blockchain", Peer-to-Peer Network. Appl., 1-14. https://doi.org/10.1007/s12083-021-01103-8.
  32. Liu, P., Li, B., Zheng, J., Liang, Q., Wu, C., Huang, L., Zhang, P., Jia, Y. and Wang, S. (2021), "A novel N-nitrosation-based ratiometric fluorescent probe for highly selective imaging endogenous nitric oxide in living cells and zebrafish", Sensor. Actuat. B-Chem., 329, 129147. https://doi.org/10.1016/j.snb.2020.129147.
  33. Lou, R., Lv, Z., Dang, S., Su, T. and Li, X. (2021a), "Application of machine learning in ocean data", Multimedia Syst., 1-10. https://doi.org/10.1007/s00530-020-00733-x.
  34. Lou, R., Wang, W., Li, X., Zheng, Y. and Lv, Z. (2021b), "Prediction of ocean wave height suitable for ship autopilot", IEEE T. Intell. Transp. https://doi.org/10.1109/TITS.2021.3067040.
  35. Lv, Z., Chen, D. and Li, J. (2021a), "Novel system design and implementation for the smart city vertical market", IEEE Commun., 59(4), 126-131. https://doi.org/10.1109/MCOM.001.2000945.
  36. Lv, Z., Chen, D., Lou, R. and Alazab, A. (2021b), "Artificial intelligence for securing industrial-based cyber-physical systems", Future Gener. Comp. Syst. 117, 291-298. https://doi.org/10.1016/j.future.2020.12.001.
  37. Lv, Z., Lou, R., Li, J., Singh, A.K. and Song, H. (2021c), "Big data analytics for 6G-enabled massive internet of things", IEEE Internet of Things J., 8(7), 5350-5359. https://doi.org/10.1109/JIOT.2021.3056128.
  38. Ma, L., Liu, X. and Moradi, Z. (2021a), "On the chaotic behavior of graphene-reinforced annular systems under harmonic excitation", Eng. Comput., 1-25. https://doi.org/10.1007/s00366-020-01210-9.
  39. Ma, R., Karimzadeh, M., Ghabussi, A., Zandi, Y., Baharom, S., Selmi, A. and Maureira-Carsalade, N. (2021b), "Assessment of composite beam performance using GWO-ELM metaheuristic algorithm", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-021-01363-1.
  40. Mohammadhassani, M., Nezamabadi-Pour, H., Suhatril, M. and Shariati, M. (2013), "Identification of a suitable ANN architecture in predicting strain in tie section of concrete deep beams", Struct. Eng. Mech., Int. J., 46(6), 853-868. http://doi.org/10.12989/sem.2013.46.6.853.
  41. Mohammadhassani, M., Nezamabadi-Pour, H., Suhatril, M. and Shariati, M. (2014), "An evolutionary fuzzy modelling approach and comparison of different methods for shear strength prediction of high-strength concrete beams without stirrups", Smart Struct. Syst., Int. J., 14(5), 785-809. http://doi.org/10.12989/sss.2014.14.5.785.
  42. Moosazadeh, S., Namazi, E., Aghababaei, H., Marto, A., Mohamad, H. and Hajihassani, M. (2018), "Prediction of building damage induced by tunnelling through an optimized artificial neural network", Eng. Comput., 1-13. https://doi.org/10.1007/s00366-018-0615-5.
  43. Mora-Duarte, J., Betts, R., Rotstein, C., Colombo, A.L., Thompson-Moya, L., Smietana, J., Lupinacci, R., Sable, C., Kartsonis, N. and Perfect, J. (2002), "Comparison of caspofungin and amphotericin B for invasive candidiasis", New Engl. J. Med., 347(25), 2020-2029. https://doi.org/10.1056/NEJMoa021585.
  44. Moradi, Z., Davoudi, M., Ebrahimi, F. and Ehyaei, A.F. (2021), "Intelligent wave dispersion control of an inhomogeneous micro-shell using a proportional-derivative smart controller", Wave. Random Complex, 1-24. https://doi.org/10.1080/17455030.2021.1926572.
  45. Morasaei, A., Ghabussi, A., Aghlmand, S., Yazdani, M., Baharom, S. and Assilzadeh, H. (2021), "Simulation of steel-concrete composite floor system behavior at elevated temperatures via multi-hybrid metaheuristic framework", Eng. Comput., 1-16. https://doi.org/10.1007/s00366-020-01228-z.
  46. More, J.J. (1978), "The Levenberg-Marquardt algorithm: implementation and theory", In: Numerical Analysis (pp. 105-116). Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0067700.
  47. Oztas, A., Pala, M., Ozbay, E.A., Kanca, E., Caglar, N. and Bhatti, M.A. (2006), "Predicting the compressive strength and slump of high strength concrete using neural network", Constr. Build. Mater., 20(9), 769-775. https://doi.org/10.1016/j.conbuildmat.2005.01.054.
  48. Pan, D., Xia, X.-X., Zhou, H., Jin, S.-Q., Lu, Y.-Y., Liu, H., Gao, M.-L. and Jin, Z.-B. (2020), "COCO enhances the efficiency of photoreceptor precursor differentiation in early human embryonic stem cell-derived retinal organoids", Stem Cell Res. Therapy, 11(1), 1-12. https://doi.org/10.1186/s13287-020-01883-5.
  49. Panda, L., Banerjee, P., Biswal, S.K.,Venugopal, R. and Mandre, N. (2014), "Artificial neural network approach to assess selective flocculation on hematite and kaolinite", Int. J. Miner. Metall. Mater., 21(7), 637-646. https://doi.org/10.1007/s12613-014-0952-3.
  50. Pang, X., Gong, K., Zhang, X., Wu, S., Cui, Y. and Qian, B.-Z. (2019), "Osteopontin as a multifaceted driver of bone metastasis and drug resistance", Pharmacol. Res., 144, 235-244. https://doi.org/10.1016/j.phrs.2019.04.030.
  51. Priddy, K.L. and Keller, P.E. (2005), Artificial Neural Networks: An introduction, SPIE press, Bellingham, Washington, U.S.A.
  52. Qi, C. and Fourie, A. (2019), "Cemented paste backfill for mineral tailings management: Review and future perspectives", Miner. Eng., 144, 106025. https://doi.org/10.1016/j.mineng.2019.106025.
  53. Qi, C., Chen, Q. and Kim, S.S. (2020), "Integrated and intelligent design framework for cemented paste backfill: A combination of robust machine learning modelling and multi-objective optimization", Miner. Eng., 155, 106422. https://doi.org/10.1016/j.mineng.2020.106422.
  54. Saad, S. and Malik, H. (2018), "Gene expression programming (GEP) based intelligent model for high performance concrete comprehensive strength analysis", J. Intell. Fuzzy Syst., 35(5), 5403-5418. http://doi.org/10.3233/JIFS-169822.
  55. Sadeghipour Chahnasir, E., Zandi, Y., Shariati, M., Dehghani, E., Toghroli, A., Mohamed, E.T., Shariati, A., Safa, M., Wakil, K. and Khorami, M. (2018), "Application of support vector machine with firefly algorithm for investigation of the factors affecting the shear strength of angle shear connectors", Smart Struct. Syst., Int. J., 22(4), 413-424. http://doi.org/10.12989/sss.2018.22.4.413.
  56. Safa, M., Shariati, M., Ibrahim, Z., Toghroli, A., Baharom, S. B., Nor, N.M. and Petkovic, D. (2016), "Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steel-concrete composite beam's shear strength", Steel Compos. Struct., Int. J., 21(3), 679-688. https://doi.org/10.12989/scs.2016.21.3.679.
  57. Safa, M., Sari, P.A., Shariati, M., Suhatril, M., Trung, N.T., Wakil, K. and Khorami, M. (2020), "Development of neuro-fuzzy and neuro-bee predictive models for prediction of the safety factor of eco-protection slopes", Physica A, 124046. https://doi.org/10.1016/j.physa.2019.124046.
  58. Salas, D.A., Ramirez, A.D., Rodriguez, C.R., Petroche, D.M., Boero, A.J. and Duque-Rivera, J. (2016), "Environmental impacts, life cycle assessment and potential improvement measures for cement production: a literature review", J. Clean. Prod., 113, 114-122. https://doi.org/10.1016/j.jclepro.2015.11.078.
  59. Sedghi, Y., Zandi, Y., Shariati, M., Ahmadi, E., Moghimi Azar, V., Toghroli, A., Safa, M., Tonnizam Mohamad, E., Khorami, M. and Wakil, K. (2018), "Application of ANFIS technique on performance of C and L shaped angle shear connectors", Smart. Struct. Syst., Int. J., 22(3), 335-340. https://doi.org/10.12989/sss.2018.22.3.335.
  60. Shariati, M., Mafipour, M.S., Mehrabi, P., Bahadori, A., Zandi, Y., Salih, M.N., Nguyen, H., Dou, J., Song, X. and Poi-Ngian, S. (2019a), "Application of a hybrid artificial neural network-particle swarm optimization (ANN-PSO) model in behavior prediction of channel shear connectors embedded in normal and high-strength concrete", Appl. Sci., 9(24), 5534. http://doi.org/10.3390/app9245534.
  61. Shariati, M., Mafipour, M.S., Mehrabi, P., Zandi, Y., Dehghani, D., bahadori, A., Shariati, A., Trung, N.T., Salih, M.N. and Poi-Ngian, S. (2019b), "Application of Extreme Learning Machine (ELM) and Genetic Programming (GP) to design steel-concrete composite floor systems at elevated temperatures", Steel Compos. Struct., Int. J., 33(3), 319-332. https://doi.org/10.12989/scs.2019.33.3.319.
  62. Shariati, A., Ghabussi, A., Habibi, M., Safarpour, H., Safarpour, M., Tounsi, A. and Safa, M. (2020a), "Extremely large oscillation and nonlinear frequency of a multi-scale hybrid disk resting on nonlinear elastic foundation", Thin Wall. Struct., 154, 106840. https://doi.org/10.1016/j.tws.2020.106840.
  63. Shariati, M., Mafipour, M. S., Ghahremani, B., Azarhomayun, F., Ahmadi, M., Trung, N.T. and Shariati, A. (2020b), "A novel hybrid extreme learning machine-grey wolf optimizer (ELM-GWO) model to predict compressive strength of concrete with partial replacements for cement", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01081-0.
  64. Shariati, M., Mafipour, M.S., Haido, J.H., Yousif, S.T., Toghroli, A., Trung, N.T. and Shariati, A. (2020c), "Identification of the most influencing parameters on the properties of corroded concrete beams using an Adaptive Neuro-Fuzzy Inference System (ANFIS) ", Steel Compos. Struct., Int. J., 34(1), 155-170. https://doi.org/10.12989/scs.2020.34.1.155.
  65. Shariati, M., Mafipour, M.S., Mehrabi, P., Ahmadi, M., Wakil, K., Trung, N.T. and Toghroli, A. (2020d), "Prediction of concrete strength in presence of furnace slag and fly ash using Hybrid ANN-GA (Artificial Neural Network-Genetic Algorithm)" Smart Struct. Syst., Int. J., 25(2), 183-195. http://doi.org/10.12989/sss.2020.25.2.183.
  66. Shariati, M., Mafipour, M.S., Mehrabi, P., Shariati, A., Toghroli, A., Trung, N.T. and Salih, M.N. (2020e), "A novel approach to predict shear strength of tilted angle connectors using artificial intelligence techniques", Eng. Comput., 1-21. https://doi.org/10.1007/s00366-019-00930-x.
  67. Toghroli, A., Mohammadhassani, M., Suhatril, M., Shariati, M. and Ibrahim, Z. (2014), "Prediction of shear capacity of channel shear connectors using the ANFIS model", Steel Compos. Struct., Int. J., 17(5), 623-639. http://doi.org/10.12989/scs.2014.17.5.623.
  68. Toghroli, A., Suhatril, M., Ibrahim, Z., Safa, M., Shariati, M. and Shamshirband, S. (2016), "Potential of soft computing approach for evaluating the factors affecting the capacity of steel-concrete composite beam", J. Intell. Manuf., 1-9. http://doi.org/10.1007/s10845-016-1217-y.
  69. Vapnik, V., Golowich, S.E. and Smola, A. (1996), "Support vector method for function approximation, regression estimation, and signal processing", Adv. Neural Inform. Proc. Syst., 281-287.
  70. Wang, X.-F., Gao, P., Liu, Y.-F., Li, H.-F. and Lu, F. (2020), "Predicting thermophilic proteins by machine learning", Curr. Bioinformat., 15(5), 493-502. https://doi.org/10.2174/1574893615666200207094357.
  71. Wu, J. and Habibi, M. (2021), "Dynamic simulation of the ultrafast-rotating sandwich cantilever disk via finite element and semi-numerical methods", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-021-01396-6.
  72. Wu, S.-w., Yang, J. and Cao, G.-m. (2021), "Prediction of the Charpy V-notch impact energy of low carbon steel using a shallow neural network and deep learning", Int. J. Miner. Metall. Mater., 28, 1-12. https://doi.org/10.1007/s12613-020-2168-z.
  73. Xu, J., Ji, L., Ruan, Y., Wan, Z., Lin, Z., Xia, S., Tao, L., Zheng, J., Cai, L. and Wang, Y. (2021a), "UBQLN1 mediates sorafenib resistance through regulating mitochondrial biogenesis and ROS homeostasis by targeting PGC1β in hepatocellular carcinoma", Signal Transduct. Target. Therapy, 6(1), 1-13. https://doi.org/10.1038/s41392-021-00594-4.
  74. Xu, L., Jiang, S., Wu, J. and Zou, Q. (2021b), "An in silico approach to identification, categorization and prediction of nucleic acid binding proteins", Brief. Bioinform., 22(3), bbaa171. https://doi.org/10.1093/bib/bbaa171.
  75. Yu, Z., Amin, S. U., Alhussein, M. and Lv, Z. (2021), "Research on disease prediction based on improved DeepFM and IoMT", IEEE Access, 9, 39043-39054. https://doi.org/10.1109/ACCESS.2021.3062687.
  76. Zhang, J. and Liu, B. (2019), "A review on the recent developments of sequence-based protein feature extraction methods", Curr. Bioinform., 14(3), 190-199. https://doi.org/10.2174/1574893614666181212102749.
  77. Zhao, H., Liu, X., Yu, L., Lin, S., Zhang, C., Xu, H., Leng, Z., Huang, W., Lei, J. and Li, T. (2021a), "Comprehensive landscape of epigenetic-dysregulated lncRNAs reveals a profound role of enhancers in carcinogenesis in BC subtypes", Molecular Therapy-Nucleic Acids, 23, 667-681. https://doi.org/10.1016/j.omtn.2020.12.024.
  78. Zhao, Y., Moradi, Z., Davoudi, M. and Zhuang, J. (2021b), "Bending and stress responses of the hybrid axisymmetric system via state-space method and 3D-elasticity theory", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01242-1.
  79. Zhou, M., Wang, Y., Liu, Y. and Tian, Z. (2019), "An information-theoretic view of WLAN localization error bound in GPS-denied environment", IEEE T. Veh. Technol., 68(4), 4089-4093. https://doi.org/10.1109/tvt.2019.2896482
  80. Zhou, M., Li, X., Wang, Y., Li, S., Ding, Y. and Nie, W. (2020), "6G Multi-source information fusion based indoor positioning via gaussian kernel density estimation", IEEE Internet of Things J.
  81. Zhou, M., Li, Y., Tahir, M.J., Geng, X., Wang, Y. and He, W. (2021), "Integrated statistical test of signal distributions and access point contributions for Wi-Fi indoor localization", IEEE T. Veh. Technol.
  82. Zou, Q., Xing, P., Wei, L. and Liu, B. (2019), "Gene2vec: gene subsequence embedding for prediction of mammalian N6-methyladenosine sites from mRNA", Rna, 25(2), 205-218. http://www.rnajournal.org/cgi/doi/10.1261/rna.069112.118.