DOI QR코드

DOI QR Code

Binary-phase Complex Spatial Light Modulators Driven by Mirror Symmetry

  • Choi, Minho (Department of Information Display, Kyung Hee University) ;
  • Choi, Jaewu (Department of Information Display, Kyung Hee University)
  • Received : 2020.11.24
  • Accepted : 2021.03.16
  • Published : 2021.06.25

Abstract

Binary-phase complex spatial light modulators (BP-C-SLMs) are proposed and simulated. This study shows that bottom-top mirror-symmetrical uniaxial systems between two orthogonal polarizers allow one to construct BP-C-SLMs. BP-C-SLMs double the information-handling capacity per pixel, compared to the conventional amplitude-only spatial light modulators (A-SLMs), as well as being simply implemented with a single spatial light modulator (SLM), rather than a combination of an A-SLM and a binary-phase SLMs. Under limited conditions, BP-C-SLMs can control only the amplitude in single-phase space, and act as A-SLMs.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2019R1F1A106364312, and the BK21 FOUR Program).

References

  1. W. M. Pimenta, B. Marques, M. A. D. Carvalho, M. R. Barros, J. G. Fonseca, J. Ferraz, M. T. Cunha, and S. Padua, "Minimal state tomography of spatial qubits using a spatial light modulator," Opt. Express 18, 24423-24433 (2010). https://doi.org/10.1364/OE.18.024423
  2. E. J. Fernandez, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005). https://doi.org/10.1016/j.visres.2005.08.028
  3. J. M. Andersen, S. N. Alperin, A. A. Voitiv, W. G. Holtzmann, J. T. Gopinath, and M. E. Siemens, "Characterizing vortex beams from a spatial light modulator with collinear phase-shifting holography," Appl. Opt. 58, 404-409 (2019). https://doi.org/10.1364/AO.58.000404
  4. J. Cho, S. Kim, S. Park, B. Lee, and H. Kim, "DC-free on-axis holographic display using a phase-only spatial light modulator," Opt. Lett. 43, 3397-3400 (2018). https://doi.org/10.1364/OL.43.003397
  5. H. Jeong and J. Choi, "Scalable micromesh-digital spatial light modulators," Opt. Express 23, 26696-26709 (2015). https://doi.org/10.1364/OE.23.026696
  6. H. Jeong and J. Choi, "Scalable digital spatial light modulator-micromesh heterostructures for real time wave optical applications," Opt. Express 22, 22865-22881 (2014). https://doi.org/10.1364/OE.22.022865
  7. K. H. Kagalwala, G. D. Giuseppe, A. F. Abouraddy, and B. E. A. Saleh, "Single-photon three-qubit quantum logic using spatial light modulators," Nat. Commun. 8, 739 (2017). https://doi.org/10.1038/s41467-017-00580-x
  8. Z. Qu and I. B. Djordjevic, "Four-dimensionally multiplexed eight-state continuous-variable quantum key distribution over turbulent channels," IEEE Photonics J. 9, 1-8 (2017). https://doi.org/10.1109/JPHOT.2017.2724563
  9. Z. Qu and I. B. Djordjevic, "High-speed free-space optical continuous-variable quantum key distribution enabled by three-dimensional multiplexing," Opt. Express 25, 7919-7928 (2017). https://doi.org/10.1364/OE.25.007919
  10. S. Deachapunya, S. Srisuphaphon, P. Panthong, T. Photia, K. Boonkham, and S. Chiangga, "Realization of the single photon Talbot effect with a spatial light modulator," Opt. Express 24, 20029-20035 (2016). https://doi.org/10.1364/OE.24.020029
  11. Y. Su, Z. Cai, Q. Liu, L. Shi, F. Zhou, and J. Wu, "Binocular holographic three-dimensional display using a single spatial light modulator and a grating," J. Opt. Soc. Am. A 35, 1477-1486 (2018). https://doi.org/10.1364/josaa.35.001477
  12. H. Kim, W. Lee, H.-G. Lee, H. Jo, Y. Song, and J. Ahn, "In situ single-atom array synthesis using dynamic holographic optical tweezers," Nat. Commun. 7, 13317 (2016). https://doi.org/10.1038/ncomms13317
  13. Y. Liang, Y. Cai, Z. Wang, M. Lei, Z. Cao, Y. Wang, M. Li, S. Yan, P. R. Bianco, and B. Yao, "Aberration correction in holographic optical tweezers using a high-order optical vortex," Appl. Opt. 57, 3618-3623 (2018). https://doi.org/10.1364/ao.57.003618
  14. F. Zhu, S. Huang, W. Shao, J. Zhang, M. Chen, W. Zhang, and J. Zeng, "Free-space optical communication link using perfect vortex beams carrying orbital angular momentum (OAM)," Opt. Commun. 396, 50-57 (2017). https://doi.org/10.1016/j.optcom.2017.03.023
  15. S. Reichelt, R. Haussler, G. Futterer, N. Leister, H. Kato, N. Usukura, and Y. Kanbayashi, "Full-range, complex spatial light modulator for real-time holography," Opt. Lett. 37, 1955-1957 (2012). https://doi.org/10.1364/OL.37.001955
  16. A. J. Macfaden and T. D. Wilkinson, "Characterization, design, and optimization of a two-pass twisted nematic liquid crystal spatial light modulator system for arbitrary complex modulation," J. Opt. Soc. Am. A 34, 161-170 (2017). https://doi.org/10.1364/JOSAA.34.000161
  17. Y. Gao, Z. Chen, J. Ding, and H.-T. Wang, "Single ultra-high-definition spatial light modulator enabling highly efficient generation of fully structured vector beams," Appl. Opt. 58, 6591-6596 (2019). https://doi.org/10.1364/AO.58.006591
  18. D. A. Gregory, J. C. Kirsch, and E. C. Tam, "Full complex modulation using liquid-crystal televisions," Appl. Opt. 31, 163-165 (1992). https://doi.org/10.1364/AO.31.000163
  19. S. Park, J. Roh, S. Kim, J. Park, H. Kang, J. Hahn, Y. Jeon, S. Park, and H. Kim, "Characteristics of complex light modulation through an amplitude-phase double-layer spatial light modulator," Opt. Express 25, 3469-3480 (2017). https://doi.org/10.1364/OE.25.003469
  20. L. Zhu and J. Wang, "Arbitrary manipulation of spatial amplitude and phase using phase-only spatial light modulators," Sci. Rep. 4, 7441 (2014). https://doi.org/10.1038/srep07441
  21. L. G. Neto, D. Roberge, and Y. Sheng, "Full-range, continuous, complex modulation by the use of two coupled-mode liquid-crystal televisions," Appl. Opt. 35, 4567-4576 (1996). https://doi.org/10.1364/AO.35.004567
  22. M. Choi and J. Choi, "Universal phase-only spatial light modulators," Opt. Express 25, 22253-22267 (2017). https://doi.org/10.1364/OE.25.022253
  23. T. D. Wilkinson, D. C. O'Brien, and R. J. Mears, "Dynamic asymmetric binary holograms using a ferroelectric liquid crystal spatial light modulator," Opt. Commun. 109, 222-226 (1994). https://doi.org/10.1016/0030-4018(94)90683-1
  24. J. A. Davis, K. O. Valadez, and D. M. Cottrell, "Encoding amplitude and phase information onto a binary phase-only spatial light modulator," Appl. Opt. 42, 2003-2008 (2003). https://doi.org/10.1364/AO.42.002003
  25. C. Maurer, A. Schwaighofer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, "Suppression of undesired diffraction orders of binary phase holograms," Appl. Opt. 47, 3994-3998 (2008). https://doi.org/10.1364/AO.47.003994
  26. W. Chen, "Computer-generated hologram using binary phase with an aperture," Appl. Opt. 56, 9126-9131 (2017). https://doi.org/10.1364/AO.56.009126
  27. T. Shimobaba, T. Takahashi, Y. Yamamoto, I. Hoshi, A. Shiraki, T. Kakue, and T. Ito, "Simple complex amplitude encoding of a phase-only hologram using binarized amplitude," J. Opt. 22, 045703 (2020). https://doi.org/10.1088/2040-8986/ab7b02
  28. P. Yeh and C. Gu, Optics of Liquid Crystal Displays, 2nd ed. (John Wiley & Sons, NJ. USA. 2010), Chapter 4.