DOI QR코드

DOI QR Code

Direct Time-domain Phase Correction of Dual-comb Interferograms for Comb-resolved Spectroscopy

  • Lee, Joohyung (Department of Mechanical System Design Engineering, Seoul National University of Science and Technology)
  • Received : 2021.03.09
  • Accepted : 2021.04.02
  • Published : 2021.06.25

Abstract

We describe a comb-mode resolving spectroscopic technique by direct time-domain phase correction of unstable interferograms obtained from loosely locked two femtosecond lasers. A low-cost continuous wave laser and conventional repetition rate stabilization method were exploited for locking carrier and envelope phase of interferograms, respectively. We intentionally set the servo control at low bandwidth, resulting in severe interferograms' fluctuation to demonstrate the capability of the proposed correction method. The envelope phase of each interferogram was estimated by a quadratic fit of carrier peaks to correct timing fluctuation of interferograms in the time domain. After envelope phase correction on individual interferograms, we successfully demonstrated 1 Hz linewidth of RF comb-mode over 200 GHz optical spectral-bandwidth with 10-times signal-to-noise ratio (SNR) enhancement compared to the spectrum without correction. Besides, the group delay difference between two femtosecond pulses is successfully estimated through a linear slope of phase information.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2018R1C1B6001050).

References

  1. T. W. Hansch, "Nobel lecture: passion for precision," Rev. Mod. Phys. 78, 1297-1309 (2006). https://doi.org/10.1103/RevModPhys.78.1297
  2. T. Udem, R. Holzwarth, and T. W. Hansch, "Optical frequency metrology," Nature 416, 233-237 (2002). https://doi.org/10.1038/416233a
  3. S.-W. Kim, "Combs rule," Nat. Photon. 3, 313-314 (2009). https://doi.org/10.1038/nphoton.2009.86
  4. N. R. Newbury, "Searching for applications with a fine-tooth comb," Nat. Photon. 5, 186-188 (2011). https://doi.org/10.1038/nphoton.2011.38
  5. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, "Cavity-enhanced dual-comb spectroscopy," Nat. Photon. 4, 55-57 (2010). https://doi.org/10.1038/nphoton.2009.217
  6. T. Udem, J. Reichert, R. Holzwarth, and T. W. Hansch, "Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser," Phys. Rev. Lett. 82, 3568-3571 (1999). https://doi.org/10.1103/PhysRevLett.82.3568
  7. J. Mandon, G. Guelachvili, and N. Picque, "Fourier transform spectroscopy with a laser frequency comb," Nat. Photon. 3, 99-102. (2009). https://doi.org/10.1038/nphoton.2008.293
  8. J. Kasparian, M. Rodriguez, G. Mejean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. Andre, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Woste, "White-light filaments for atmospheric analysis," Science 301, 61-64 (2003). https://doi.org/10.1126/science.1085020
  9. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, "Rapid and precise absolute distance measurements at long range," Nat. Photon. 3, 351-356 (2009). https://doi.org/10.1038/nphoton.2009.94
  10. J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, "Time-of-flight measurement with femtosecond light pulses," Nat. Photon. 4, 716-720 (2010). https://doi.org/10.1038/nphoton.2010.175
  11. Y. Na, C.-G. Jeon, C. Ahn, M. Hyun, D. Kwon, J. Shin, and J. Kim, "Ultrafast, sub-nanometre-precision and multifunctional time-of-flight detection," Nat. Photon. 14, 355-360 (2020). https://doi.org/10.1038/s41566-020-0586-0
  12. Y. Lu, J. Park, D. Bian, L. Yu, and S.-W. Kim, "Simultaneous 3-D Surface Profiling of Multiple Targets by Repetition Rate Scanning of a Single Femtosecond Laser," Int. J. Precis. Eng. Manuf. 21, 211-217 (2020). https://doi.org/10.1007/s12541-019-00246-2
  13. W.-D. Joo, J. Park, S. Kim, S. Kim, Y. Kim, S.-W. Kim, and Y.-J. Kim, "Phase shifting interferometry for large-sized surface measurements by sweeping the repetition rate of femtosecond light pulses," Int. J. Precis. Eng. Manuf. 14, 241-246 (2013). https://doi.org/10.1007/s12541-013-0033-y
  14. K. Lee, J. Lee, Y.-S. Jang, S. Han, H. Jang, Y.-J. Kim, and S.-W. Kim, "Fourier-transform spectroscopy using an Er-doped fiber femtosecond laser by sweeping the pulse repetition rate," Sci. Rep. 5, 15726 (2015). https://doi.org/10.1038/srep15726
  15. Y.-S. Jang, W. Kim, H. Jang, and S.-W. Kim, "Absolute distance meter operating on a free-running mode-locked laser for space mission," Int. J. Precis. Eng. Manuf. 19, 975-981 (2018). https://doi.org/10.1007/s12541-018-0115-y
  16. F. Keilmann, C. Gohle, and R. Holzwarth, "Time-domain mid-infrared frequency-comb spectrometer," Opt. Lett. 29, 1542-1544 (2004). https://doi.org/10.1364/OL.29.001542
  17. I. Coddington, W. C. Swann, and N. R. Newbury, "Coherent multiheterodyne spectroscopy using stabilized optical frequency combs," Phys. Rev. Lett., 101, 049901 (2008). https://doi.org/10.1103/PhysRevLett.101.049901
  18. I. Coddington, N. Newbury, and W. Swann, "Dual-comb spectroscopy," Optica 3, 414-426 (2016). https://doi.org/10.1364/OPTICA.3.000414
  19. I. Coddington, W. C. Swann, and N. R. Newbury, "Coherent dual-comb spectroscopy at high signal-to-noise ratio," Phys. Rev. A 82, 043817 (2010). https://doi.org/10.1103/physreva.82.043817
  20. S. Boudreau, S. Levasseur, C. Perilla, S. Roy, and J. Genest, "Chemical detection with hyperspectral lidar using dual frequency combs," Opt. Express 21, 7411-7418 (2013). https://doi.org/10.1364/OE.21.007411
  21. E. L. Teleanu, V. Duran, and V. Torres-Company, "Electro-optic dual-comb interferometer for high-speed vibrometry," Opt. Express, 25, 16427-16436 (2017). https://doi.org/10.1364/OE.25.016427
  22. J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, "Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength," Meas. Sci. Technol. 24, 045201 (2013). https://doi.org/10.1088/0957-0233/24/4/045201
  23. N. Kuse, A. Ozawa, and Y. Kobayashi, "Static FBG strain sensor with high resolution and large dynamic range by dualcomb spectroscopy," Opt. Express 21, 11141-11149 (2013). https://doi.org/10.1364/OE.21.011141
  24. Z. Chen, M. Yan, T. W. Hansch, and N. Picque, "A phase-stable dual-comb interferometer," Nat. Commun. 9, 3035 (2018). https://doi.org/10.1038/s41467-018-05509-6
  25. T. Ideguchi, A. Poisson, G. Guelachvili, N. Picque, and T. W. Hansch, "Adaptive real-time dual-comb spectroscopy," Nat. Commun. 5, 3375-3382 (2014). https://doi.org/10.1038/ncomms4375
  26. P. Giaccari, J.-D. Deschenes, P. Saucier, J. Genest, and P. Tremblay, "Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method," Opt. Express 16, 4347-4365 (2008). https://doi.org/10.1364/OE.16.004347
  27. J.-D. Deschenes, P. Giaccari, and J. Genes, "Optical referencing technique with CW lasers as intermediate oscillators for continuous full delay range frequency comb interferometry," Opt. Express 18, 23358-23370 (2010). https://doi.org/10.1364/OE.18.023358
  28. J. Roy, J.-D. Deschenes, S. Potvin, and J. Genest, "Continuous real-time correction and averaging for frequency comb interferometry," Opt. Express 20, 21932-21939 (2012). https://doi.org/10.1364/OE.20.021932
  29. D. Burghoff, Y. Yang, and Q. Hu, "Computational multiheterodyne spectroscopy," Sci. Adv. 2, e1601227 (2016). https://doi.org/10.1126/sciadv.1601227
  30. Z. Zhu, K. Ni, Q. Zhou, and G. Wu, "Digital correction method for realizing a phase-stable dual-comb interferometer," Opt. Express 26, 16813-16823 (2018). https://doi.org/10.1364/OE.26.016813
  31. H. Yu, K. Ni, Q. Zhou, X. Li, X. Wang, and G. Wu, "Digital error correction of dual-comb interferometer without external optical referencing information," Opt. Express 27, 29425-29438 (2019). https://doi.org/10.1364/OE.27.029425
  32. M. C. Park and S. W. Kim, "Direct quadratic polynomial fitting for fringe peak detection of white light scanning interferograms," Opt. Eng. 39, 952-959 (2000). https://doi.org/10.1117/1.602445
  33. W. Demtroder, Laser Spectroscopy, 4th ed. (Springer, Berlin, Germany. 2008).