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The problem of polarized light scattering by a cylinder on or close to a planar substrate is analytically 
solved. The light is assumed to be normally incident to the axis of the cylinder. Transverse magnetic (TM) 
and transverse electric (TE) polarizations are treated separately. The solution for each polarization is 
composed of a coupled set of linear equations which couples the scattering characteristics of the cylin-
der and the planar substrate. The coupling comes from the scattering by the planar substrate and by the 
cylinder. The solution of the coupled set of equations obtained by iterative substitution consists of infi-
nite series, where each term represents the contribution of single and multiple scatterings of all orders.
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I. INTRODUCTION

Light scattering by an object in the presence of a planar 
substrate is encountered in various situations, and proper 
theoretical solutions for these problems would be of great 
value in many possible applications. Accordingly, research 
dealing with these problems has been reported in many 
articles [1–13]. The presence of two scattering objects 
inevitably induces multiple scattering, and its effect is es-
pecially important when the objects are close to each other. 
Theoretical solutions for the problem should elucidate such 
multiple scattering effects systematically through the cor-
responding terms extended up to higher orders. 

Given the importance of the problem, theoretical analy-
sis of light scattering by a cylinder or cylinders in the pres-
ence of a planar substrate has been attempted under various 
restrictive conditions, such as using a perfectly conducting 
cylinder [7, 8], a perfectly reflecting plane [6, 10], or inclu-
sion of multiple scattering terms, only up to second order, 

ignoring higher-order terms [8–13]. Thus, it is desirable 
to develop a more general theory with no condition on the 
properties of the scattering objects to include all possible 
situations, at least for simple geometries.

Recently, analytic solutions to the problem of scalar 
wave scattering by a cylinder and a planar substrate [14] 
and by a sphere and a planar substrate [15], which do not 
impose any restriction on the properties of the scattering 
objects, have been reported. Light is a transverse vector 
wave with two independent polarization components, and 
thus vector theory should be properly employed for a rigor-
ous treatment.

This study analyzes the scattering of polarized light by a 
cylinder on or close to a planar substrate to obtain a rigor-
ous analytic solution. For mathematical simplicity, we limit 
the direction of propagation of the incident light to be nor-
mal to the cylinder, but not necessarily to the surface of the 
substrate, where the transverse magnetic (TM) and trans-
verse electric (TE) polarizations are separately treated. The 
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solutions reported in this paper apply to any combination 
of cylinder and planar substrate, no matter whether they are 
dielectric or conducting, so long as they are composed of 
linear and isotropic media. 

II. THEORY

Figure 1 shows the schematic of the problem in a cross-
sectional view: the scattering of light by a circular cylinder 
and a planar substrate. The substrate fills the right half 
space. To the left is air and a cylinder of radius a, with its 
axis placed parallel to and at a distance d (≥ a) from the 
substrate. The electric susceptibilities and magnetic perme-
abilities of air, the cylinder, and substrate are ϵ0, and μ0, ϵc 
and μc, and ϵp and μp, respectively. The axis of the cylinder 
is taken as the z-axis, and the plane perpendicular to the 
axis as the xy-plane (see Fig. 1).

For notational simplicity, the electric field E and mag-
netic field H of light are denoted by a single symbol F in 
some sections of this paper. The subscripts i, r, and σ of the 
field vectors in air respectively denote the incident light, 
light reflected from the substrate, and light scattered by the 
cylinder; the subscripts t and, τ respectively denote the light 
transmitted to the substrate and the cylinder.

The incident light field Fi is assumed to be of angular 
frequency ω and is a superposition of plane waves coming 
from the left, with the wave vector k normal to the cylinder 
axis. Thus, this problem is reduced to a two-dimensional 
one. In air, the field Fσ is scattered by the cylinder and the 
field Fr reflected from the planar substrate, while the trans-

mitted fields Fτ and Ft are in the cylinder and substrate, 
respectively. Thus, the whole field F can be represented as 
follows:
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These fields in the three regions are the solutions to the 
following Helmholtz Eqs. [16]: 
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, (2c)

where all the fields are assumed to have the time-harmonic 
factor e−iωt, which will be omitted throughout the paper. 
k is the angular wave number in air and is related to the 
propagation speed v of the light in air and the angular fre-
quency ω through k = ω/v, where 
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 respectively are the refractive indices of 
the cylinder and the planar substrate, relative to air. At the 
boundaries, the tangential components of the electric and 
magnetic fields are continuous. 

To find the analytic solutions of Eqs. (2a)–(2c) that satis-
fy the boundary conditions, the fields need to be expressed 
in coordinates that geometrically match the boundaries. 
Because the boundaries are an infinite plane and an infinite 
circular cylindrical surface, the proper coordinate systems 
are rectangular and cylindrical respectively. 

2.1. TM Polarization

When the incident light is TM polarized, its magnetic 
field Hi can be written in terms of plane waves as follows 
[16]:
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Here, a(ky) is the angular spectrum of the incident light 
and 
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 is the impedance of air. 
The magnetic fields Hr and Ht of the light reflected from 

the surface of the substrate (x = d) and transmitted to the 
substrate can be written:
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where rTM (ky) and tTM (ky) are respectively the angular spec-

FIG. 1. Light scattering by a circular cylinder over a planar 
substrate. The cylinder has a radius of a and its axis coincides 
with the z-axis. The surface of the substrate is located at x = 
d, parallel to the yz-plane. The electric susceptibilities and 
magnetic permeabilities of air, the cylinder, and the substrate 
are ϵ0 and μ0, ϵc and μc, and ϵp and μp, respectively. The field 
vector F denotes either of the electric field E and the magnetic 
field H.
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tra of the reflected and transmitted light. 
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 is 
the impedance of the substrate material.

The magnetic fields Hσ and Hτ, which are scattered by 
and transmitted into the cylinder respectively, can be writ-
ten:
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where Hm
(1) (x) and Jm (x) are respectively the m-th order 

Hankel functions of the first kind and the mth order Bessel 
function. ρ and ϕ are respectively the radius and azimuthal 
angle in the cylindrical coordinates. 
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 is the 
impedance of the cylinder material. σTM,m and τTM,m are re-
spectively the scattering and transmission coefficients of 
the m-th-order cylindrical wave of TM polarization. 

The electric fields matched with each of the magnetic 
fields above can be obtained by using the Ampere-Max-
well’s law for harmonic fields, E = (iZ/k)

Δ × H in their 
respective regions. Now, the problem is reduced to finding 
expressions for rTM (ky), tTM (ky), σTM,m and τTM,m.

2.1.1. Boundary conditions
The boundary condition dictates that the tangential 

components of the electric and magnetic fields should be 
continuous at the interfaces. Thus, at the cylinder’s surface 
(ρ = a), the ϕ-component of the electric fields and the z-
component of the magnetic fields should be continuous:
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In addition, at the surface of the planar substrate (x = d), 
the y-component of the electric fields and the z-component 
of the magnetic fields should be continuous:
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To apply the boundary conditions, Eq. (8) should be 
written in terms of cylindrical waves, and Eq. (9) in terms 
of plane waves. Therefore, two types of expansions are 
required: one that expands a vector plane wave in terms of 
vector cylindrical waves and the other a vector cylindrical 
wave in terms of vector plane waves.

2.1.2. �Transformation from cylindrical to plane waves 
and vice versa

A divergent cylindrical wave function Hm
(1) (kρ) eimφ  can 

be expanded in terms of plane waves as follows [17, 18]:
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where the expansion functions Fm ± (ky) are 
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Therefore, the light scattered by the cylinder can be ex-
panded in terms of plane waves as follows:
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In the opposite direction, the plane waves 
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can be expanded in terms of cylindrical waves Jm (kρ) eimφ 
as follows [19]:
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where Θm ± (ky) is given by
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Therefore, the magnetic fields of the incident and re-
flected light can be expanded in terms of vector cylindrical 
waves as follows:
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where the expansion coefficients αm and βm are
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Here, ϑ(ky) is the phase change of the plane wave 
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 when it goes a distance d along the x-axis, 
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2.1.3. �Application of a boundary condition at the 
cylindrical surface

For notational simplicity, the range of the summation 
index and the range of integration is omitted hereinafter. 
From the boundary condition at the cylinder surface, Eq. (8), 
and the orthogonality of the harmonic functions, the follow-
ing relations are obtained:
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where the prime indicates a derivative with respect to 
the argument in parentheses. Eqs. (20a) and (20b) can be 
solved to find σTM,m and τTM,m. Then substituting Eq. (18) for 
βm, the following result is obtained:
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where σ0TM,m and τ0TM,m represent the following quantities: 

26 

 

������ = 	− 	��� (����)��(��)	�(�� ��⁄ )��(����)	��� (��)
��� (����)��(�)(��)	�	(�� ��⁄ )��(����)��(�)�(��)

		,      (22a) 

  

, (22a)

27 

 

������ = 	 ��� (��)��(�)(��)	�	��(��)��(�)�(��)
��� (����)��(�)(��)	�	(�� ��⁄ )��(����)��(�)�(��)

			.       (22b) 

  

. (22b)

These are the coefficients of scattering and transmission 
of the TM-polarized vector cylindrical wave of mth order 
when the cylinder is by itself [20].

2.1.4. �Application of a boundary condition at the planar 
surface

From the boundary condition at the substrate surface, 
Eq. (9), and the orthogonality of the plane waves, the fol-
lowing equations are obtained:
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Equations (23a) and (23b) can be solved to find rTM (ky) 
and tTM (ky) and the result is
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where r0TM (ky) and t0TM (ky) are the abbreviated symbols for 
the following quantities:
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These are the reflection and transmission coefficients of 
the incident plane wave of TM polarization at a planar in-
terface [21].

2.1.5. Interpretation of higher-order terms
Equations (21a), (21b), (24a), and (24b) are the basic 

expressions that comprise the solution. σTM,m and rTM (ky) 
are mutually coupled through Eqs. (21a) and (24a), respec-
tively. They can be separated by substituting Eq. (24a) for 
rTM (ky) in Eq. (21a), and Eq. (21a) for σTM,m in Eq. (24a).

Equations (21a) and (21b) are changed to the following 
form when Eq. (24a) is substituted for rTM (ky):
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In Eq. (26a), the first term corresponds to the light that 
is directly scattered by the cylinder, for an incident vector 
cylindrical wave of mth order. The second term corresponds 
to the light that is reflected at the substrate first and then 
scattered by the cylinder, thus doubly scattered. The third 
term corresponds to the light with some previous scattering 
history, cylinder-substrate-cylinder again. Thus, it implic-
itly contains multiple scattering terms of orders higher than 
three, at least. Equation (26b) has the same mathematical 
structure as Eq. (26a) except that the first factor σ0TM,m is re-

placed by τ0TM,m, meaning that the final process is transmis-
sion instead of scattering.

Equation (26a) is a self-recurrent form for σTM,m as it ap-
pears on both sides. Therefore, by substituting the entire 
right side of Eq. (26a) for σTM,m on the right-hand side re-
peatedly, multiple scattering terms of increasingly higher-
order can be obtained.

Likewise, substituting Eq. (21a) for σTM,m alters Eqs. (24a) 
and (24b) into the following: 
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The first term of Eq. (27a) corresponds to the direct 
reflection at the substrate of a plane wave with a y-com-
ponent ky. The second term corresponds to the light that 
is first scattered by the cylinder and then reflected by the 
planar substrate; thus, it is doubly scattered. The third term 
corresponds to the substrate-cylinder-substrate scattering, 
implicitly containing the terms for further scattering. Equa-
tion (27b) has the same mathematical structure as Eq. (27a), 
except that the factor r0TM (ky) is replaced by t0TM (ky); thus, 
the corresponding interpretation changes from reflection to 
transmission. Replacing r (k′y) in Eqs. (27a) and (27b) with 
the right side of Eq. (27a) can separate the pure triple-scat-
tering term from multiple-scattering terms of higher orders.

2.1.6. Special cases
(a) Incidence at the Brewster angle

If the incident light is a plane wave of TM polarization 

with an incident angle equal to the Brewster angle ϕB = 
tan−1np, then the values of the coefficients of reflection and 
transmission are r0TM (kyB) = 0 and t0TM (kyB) = 1, where kyB = 
k sin ϕB. In this case α (ky) = δ (ky − kyB) and thus Eqs. (24a) 
and (24b) have the following form:
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Equation (28a) shows that even in the case of Brewster 
incidence, there is still reflected light due to the light scat-
tered by the cylinder. In Eq. (28b), the first term is the light 
transmitted into the substrate directly, and the second term 
is the light scattered by the cylinder and then transmitted 
into the substrate.

Similarly, Eqs. (26a) and (26b) have the following form:
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Comparing Eqs. (29a) and (29b) to Eqs. (26a) and (26b), 
one term (the double-scattering term initiated by the reflec-
tion of the incident light at the planar interface) is missing, 
as expected. 

(b) Total internal reflection 
If the incident light is a TM polarized plane wave with 

angle of incidence equal to or greater than the critical angle 
of total internal reflection ϕc = sin−1np, then the value of the 
reflection coefficient becomes a unimodular complex num-
ber r0TM (kyc) = eiψ(kyc) , where kyc ≥ k sin ϕc and ψ(kyc) is the 
phase shift induced in the process of total internal reflec-
tion. In this case a(ky) = δ(ky − kyc) and thus Eqs. (25a) and 
(25b) have the following form:
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In the first term of Eq. (30a), the light is totally reflected 
at the planar interface with an appropriate phase shift while 

in Eq. (30b) it is an evanescent wave and the other terms 
are as before. In this case Eqs. (26a) and (26b) that describe 
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the scattering by and transmission to the cylinder retain the 
same form, except that the second terms are the light that 
is first totally reflected internally and then scattered by or 
transmitted into the cylinder.

It is generally accepted that air has the lowest refractive 
index of all materials. However, some metamaterials can 
have refractive indices smaller than air’s in certain limited 
frequency bands, and the condition of total internal reflec-
tion can be met [22]. Another case is that in which air is re-
placed by a material with a refractive index higher than the 
substrate’s where the above result can be used with some 
change in the values of refractive indices.

2.2. TE Polarization
For TE polarization, the electric field of the incident 

light can be written in terms of plane waves:
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Similarly, the electric fields reflected by and transmitted 
to the planar substrate are
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In addition, the electric fields scattered by and transmit-
ted into the cylinder are
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The magnetic fields corresponding to each of the electric 
fields above can be obtained by using Faraday’s law for 
harmonic fields, H = (−i/Zk)

Δ 

× E in their respective re-
gions.

The scattering and transmission coefficients of the cyl-
inder σTE,m and τTE,m, and the angular spectra of the light 
reflected by and transmitted into the planar substrate, rTE (ky) 
and tTE (ky) for TE polarization can be obtained using steps 
similar to those for TM polarization:

����� � ���������� + ���� �������������� +�����������������������������������, (36a)  

  

, (36a)

����� � � ��������� + ���� �������������� +�����������������������������������, (36b) 

  

, (36b)

������� � �������������� �+ ∑��������� + ����� ������� ����������� �������� ������������������, (37a) 

  

, (37a)

������� � �������������� �+ ∑��������� + ����� ������� ����������� �������� ������������������, (37b) 

 

, (37b)

where σ0TE,m and τ0TE,m are the scattering and the transmis-
sion coefficients of the cylinder alone,
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������ = 	− (�� ��⁄ )	��� (����)��(��)	���(����)	��� (��)
(�� ��⁄ )��� (����)��(�)(��)	�	��(����)��(�)�(��)

,    (38a) 

  

, (38a)
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������ = 	 ��� (��)��(�)(��)	�	��(��)��(�)�(��)
(�� ��⁄ )��� (����)��(�)(��)	�	��(����)��(�)�(��)

.      (38b) 

  

. (38b)

Similarly, r0TE (ky) and t0TE (ky) are the coefficients of re-
flection and transmission of the planar substrate alone,
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�������� � �
������� ��⁄ ����������� �������� �

������ ��⁄ ����������� ��������
,     (39a) 

  

, (39a)
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�������� � � ��
����� ��⁄ ����������� ��������

.      (39b) . (39b)

III. CONCLUSION

A rigorous analytic solution was obtained for the prob-
lem of light scattering in air by a circular cylinder situated 
on or close to a planar substrate. The case of normal inci-
dence to the axis of the cylinder is considered, where both 
TM and TE polarizations are treated separately. The solu-
tion assumes different compositions in three different me-
dia: In air, it is a superposition of the incident plane wave, 
the cylindrical waves scattered by the cylinder, and the 
plane waves reflected from the planar substrate. Inside the 
cylinder it is a superposition of cylindrical waves transmit-
ted to the cylinder, and inside the planar substrate, it is a su-
perposition of the plane waves transmitted to the substrate.

The solutions are given by infinite series of cylindrical 
waves and/or plane waves, consisting of numerous terms 
that represent single, double, triple, and the rest of the high-
er-order multiple scattering. The coefficient of each term 
explicitly shows the history of its scattering process, includ-
ing the associated scattering and transmission coefficients, 
the phase shift experienced, and the conversion between 
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cylindrical and plane waves.
Compared to the scalar theory in a similar situation with 

a unique solution [14], here in vector theory we obtained 
two independent solutions corresponding to incidence with 
different polarizations, TE and TM. In addition, in vector 
theory, we can consider the Brewster angle of incidence for 
TM polarization. While there is no direct reflection from 
the planar interface, the scattering by the cylinder gives rise 
to higher-order reflections from the planar interface. Such 
polarization-related phenomena cannot be found with the 
scalar theory.

A possible application of this work is identification and 
characterization of cylindrical objects like trains on a rail-
way in remote sensing or detection of fibrous contaminants 
on silicon wafers in a device fabrication process.

The approach developed here can be extended to oblique 
incidence, in which case the TM and TE polarization 
components will be coupled, due to being scattered by the 
cylinder. However, the nature of the scattering process will 
remain the same and thus the solution is expected to be 
similar but more complicated. The results of our correlated 
study of the vector theory of light scattered by a cylinder 
embedded within a planar substrate will be reported sepa-
rately.
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