Acknowledgement
The authors would like to acknowledge the support from the National Natural Science Foundation of China (51978525 & 51878426); the International Collaboration Program of Sichuan Province (18GJHZ0111); and the Fundamental Research Funds for Central Universities of China.
References
- Arai, T., Aburakawa, T., Ikago, K., Hori, N., Inoue, N., Arai, T., Aburakawa, T., Ikago, K., Hori, N. and Inoue, N. (2009), "Verification on effectiveness of a tuned viscous mass damper and its applicability to non-linear structural systems", J. Struct. Construct. Eng., 645(74), 1993-2002. https://doi.org/10.3130/aijs.74.1993.
- Brodersen, M.L., Bjorke, A.S. and Hogsberg, J.B. (2017), "Active tuned mass damper for damping of offshore wind turbine vibrations", Wind Energy, 20(5), 783-796. https://doi.org/10.1002/we.2063.
- Chen, Q.J., Zhao, Z.P., Xia, Y.Y., Pan, C., Luo, H. and Zhang, R.F. (2019), "Comfort based floor design employing tuned inerter mass system", J Sound Vib, 458, 143-157. https://doi.org/10.1016/j.jsv.2019.06.019.
- Colwell, S. and Basu, B. (2009), "Tuned liquid column dampers in offshore wind turbines for structural control", Eng. Struct., 31(2), 358-368. https://doi.org/10.1016/j.engstruct.2008.09.001.
- Dai, K., Huang, Y., Gong, C., Huang, Z. and Ren, X. (2015), "Rapid seismic analysis methodology for in-service wind turbine towers", Earthq. Eng. Eng. Vib., 14(3), 539-548. https://doi.org/10.1007/s11803-015-0043-0.
- Dai, K., Sheng, C., Zhao, Z., Yi, Z., Camara, A. and Bitsuamlak, G. (2017), "Nonlinear response history analysis and collapse mode study of a wind turbine tower subjected to tropical cyclonic winds", Wind Struct, 25(1), 79-100. https://doi.org/10.12989/was.2017.25.1.079.
- Dai, K., Wang, Y., Huang, Y. and Zhu, W. (2017), "Development of a modified stochastic subspace identification method for rapid structural assessment of in-service utility-scale wind turbine towers", Wind Energy, 20(10), 1687-1710. https://doi.org/10.1002/we.2117.
- De Domenico. D. and Ricciardi, G. (2018), "An enhanced base isolation system equipped with optimal tuned mass damper inerter (TMDI)", Earthq. Eng. Struct. Dyn., 47, 1169-1192. https://doi.org/10.1002/eqe.3011.
- Den Hartog, J.P. (1956), Mechanical Vibrations, McGraw-Hill, New York, U.S.A.
- Ding, Q.W., Li, C., Cheng, S.S., Hao, W.X., Huang, Z.Q. and Yu. W. (2019), "Study on TMD Control on Stability Improvement of Barge-Supported Floating Offshore Wind Turbine Based on the Multi-Island Genetic Algorithm", China Ocean Eng, 33(3), 309-321. https://doi.org/10.1007/s13344-019-0030-8.
- Dinh, V.N., Basu, B. and Nagarajaiah, S. (2016), "Semi-active control of vibrations of spar type floating offshore wind turbines", Smart Struct Syst, 18(4), 683-705. https://doi.org/10.12989/sss.2016.18.4.683.
- Fitzgerald, B. and Basu, B. (2016), "Structural control of wind turbines with soil structure interaction included", Eng Struct, 111, 131-151. https://doi.org/10.1016/j.engstruct.2015.12.019.
- Ghassempour, M., Failla, G. and Arena, F. (2019), "Vibration mitigation in offshore wind turbines via tuned mass damper", Eng. Struct., 183, 610-636. https://doi.org/10.1016/j.engstruct.2018.12.092.
- Giaralis, A. and Marian, L. (2016), "Use of inerter devices for weight reduction of tuned mass-dampers for seismic protection of multi-story building: the Tuned Mass-Damper-Interter (TMDI)", Active Passive Smart Struct. Integrated Syst., Las Vegas, Nevada, United States.
- Gonzalez-Buelga, A., Clare, L.R., Neild, S.A., Jiang, J.Z. and Inman, D.J. (2015), "An electromagnetic inerter-based vibration suppression device", Smart Mater Struct, 24(5), 055015. https://doi.org/10.1088/0964-1726/24/5/055015.
- Gonzalez-Buelga, A., Clare, L.R., Neild, S.A., Burrow, S.G. and Inman, D.J. (2015), "An electromagnetic vibration absorber with harvesting and tuning capabilities", Struct Control Health Monit, 22(11), 1359-1372. https://doi.org/10.1002/stc.1748.
- Hemmati, A., Oterkus, E. and Khorasanchi, M. (2019), "Vibration suppression of offshore wind turbine foundations using tuned liquid column dampers and tuned mass dampers", Ocean Eng., 172, 286-295. https://doi.org/10.1016/j.oceaneng.2018.11.055.
- Hu, Y., Wang, J., Chen, M.Z.Q., Li, Z. and Sun, Y. (2018), "Load mitigation for a barge-type floating offshore wind turbine via inerter-based passive structural control", Eng. Struct, 177, 198-209. https://doi.org/10.1016/j.engstruct.2018.09.063.
- Ikago, K., Saito, K. and Inoue, N. (2012), "Seismic control of single-degree-of-freedom structure using tuned viscous mass damper", Earthq. Eng. Struct. D., 41(3), 453-474. https://doi.org/10.1002/eqe.1138.
- Ikago, K., Sugimura, Y., Saito, K. and Inoue, N. (2012), "Modal response characteristics of a multiple-degree-of-freedom structure incorporated with tuned viscous mass dampers", J. Asian Archit. Build. Eng., 11(2), 375-382. https://doi.org/10.3130/jaabe.11.375.
- Ikago, K., Sugimura, Y., Saito, K. and Inoue, N. (2012), "Simple design method for a tuned viscous mass damper seismic control system", Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal.
- Inoue, N. and Ikago, K. (2012), Displacement Control Design of Buildings: Design Method of Long-period Seismic Isolation Buildings Against Earthquake, Maruzen Publishing, Tokyo, Japan.
- Ishii, M., Kazama, H., Miyazaki, K. and Murakami, K. (2014), "Application of tuned viscous mass damper to super-high-rise buildings", 6th World Conference of the International Association for Structural Control and Monitoring, Barcelona, Spain.
- Jahangiri, V. and Sun, C. (2019), "Integrated bi-directional vibration control and energy harvesting of monopile offshore wind turbines", Ocean Eng, 178, 260-269. https://doi.org/10.1016/j.oceaneng.2019.02.015.
- Jonkman, J. and Jonkman, B. (2018), "NWTC Information Portal (FAST v8)". https://nwtc.nrel.gov/FAST8.
- Kawamata, S. (1973), "Development of a vibration control system of structures by means of mass pumps". Tokyo, Japan, Institute of Industrial Science, University of Tokyo.
- Kawamata, S. (1989), "Liquid type mass damper with elongated discharge tube", Mitsubishi Jukogyo Kabushiki Kaisha, Tokyo, Japan.
- Kelley, N. and Jonkman, B. (2016), "NWTC Information Portal (TurbSim)". https://nwtc.nrel.gov/TurbSim.
- Krenk, S. and Hogsberg, J. (2016), "Tuned resonant mass or inerter-based absorbers: unified calibration with quasi-dynamic flexibility and inertia correction", P Roy Soc a-Math Phy, 472(2185), 20150718. https://doi.org/10.1098/rspa.2015.0718.
- Lackner, M.A. and Rotea, M.A. (2011), "Passive structural control of offshore wind turbines", Wind Energy, 14, 373-388. https://doi.org/10.1002/we.426.
- Lalonde, E.R., Dai, K., Bitsuamlak, G., Lu, W. and Zhao, Z. (2020), "Comparison of semi-active and passive tuned mass damper systems for vibration control of a wind turbine", Wind Struct, 30(6), 663-678. https://doi.org/10.12989/was.2020.30.6.663.
- Luo, H., Zhang, R.F. and Weng, D.G. (2016), "Mitigation of liquid sloshing in storage tanks by using a hybrid control method", Soil Dyn Earthq Eng, 90, 183-195. https://doi.org/10.1016/j.soildyn.2016.08.037.
- Makris, N. and Kampas, G. (2016), "Seismic protection of structures with supplemental rotational inertia", J. Eng. Mech., 142(11), 04016089. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001152.
- Marian, L. and Giaralis, A. (2014), "Optimal design of a novel tuned mass-damper-inerter (TMDI) passive vibration control configuration for stochastically support-excited structural systems", Probabilistic Eng Mech, 38, 156-164. http://dx.doi.org/10.1016/j.probengmech.2014.03.007.
- Meng, J., Dai, K., Zhao, Z., Mao, Z., Camara, A., Zhang, S. and Mei, Z. (2020), "Study on the aerodynamic damping for the seismic analysis of wind turbines in operation", Renew Energy, 159, 1224-1242. https://doi.org/10.1016/j.renene.2020.05.181.
- Murtagh, P.J., Ghosh, A., Basu, B. and Broderick, B.M. (2008), "Passive control of wind turbine vibrations including blade/tower interaction and rotationally sampled turbulence", Wind Energy, 11(4), 305-317. https://doi.org/10.1002/we.249.
- Pan, C. and Zhang, R.F. (2018), "Design of structure with inerter system based on stochastic response mitigation ratio", Struct Control Health Monit, 25(6), e2169. https://doi.org/10.1002/stc.2169.
- Pan, C., Zhang, R.F., Luo, H., Li, C. and Shen, H. (2018), "Demand-based optimal design of oscillator with parallel-layout viscous inerter damper", Struct. Control Heal. Monit., 25(1), e2051. https://doi.org/10.1002/stc.2051.
- Papageorgiou, C. and Smith, M.C. (2005), "Laboratory experimental testing of inerters", Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 2005, Seville, Spain.
- Patel, A. and Anand, R. (2019), "Effective Optimal Vibration Control Methods for Offshore Wind Turbines: Economic and Engineering Perspectives", hal-01970664. https://hal.archivesouvertes.fr/hal-01970664.
- Saito, K. and Inoue, N. (2007), "A study on optimum response control of passive control systems using viscous damper with inertial mass: substituting equivalent nonlinear viscous elements for linear viscous elements in optimum control systems", J. Technol. Des., 13(26), 457-462. https://doi.org/10.3130/aijt.13.457.
- Saito, K., Kurita, S. and Inoue, N. (2007), "Optimum response control of 1-DOF system using linear viscous damper with inertial mass and its Kelvin-type modeling", J. Struct. Eng., 53, 53-66. https://ci.nii.ac.jp/naid/110009706047.
- Saito, K., Toyota, K., Nagae, K., Sugimura, Y., Nakano, T., Nakaminam, S. and Arima, F. (2002) "Dynamic loading test and its application to a high-rase building of viscous damping devices with amplification system", Proceedings of the Third World Conference on Structural Control, Como, Italy.
- Sarkar, S. and Chakraborty, A. (2019), "Development of semiactive vibration control strategy for horizontal axis wind turbine tower using multiple magneto-rheological tuned liquid column dampers", J. Sound Vib, 457, 15-36. https://doi.org/10.1016/j.jsv.2019.05.052.
- Sarkar, S. and Fitzgerald, B. (2019), "Vibration control of spar-type floating offshore wind turbine towers using a tuned mass-damper-inerter", Struct. Control Heal. Monit., e2471, 1-23. https://doi.org/10.1002/stc.2471.
- Smith, M.C., Houghton, N.E., Long, P.J.G. and Glover, A.R. (2011), "Force-controlling hydraulic device", Cambridge Enterprise Limited (Cambridge, GB).
- Staino, A., Basu, B. and Nielsen, S.R.K. (2012), "Actuator control of edgewise vibrations in wind turbine blades", J. Sound Vib., 331(6), 1233-1256. https://doi.org/10.1016/j.jsv.2011.11.003.
- Stewart, G.M. and Lackner, M.A. (2014), "The impact of passive tuned mass dampers and wind-wave misalignment on offshore wind turbine loads", Eng. Struct., 73, 54-61. https://doi.org/10.1016/j.engstruct.2014.04.045.
- Sun, C. (2018), "Mitigation of offshore wind turbine responses under wind and wave loading: Considering soil effects and damage", Struct. Control Heal. Monit., 25(3), e2117. https://doi.org/10.1002/stc.2117.
- Sun, C. (2018), "Semi-active control of monopile offshore wind turbines under multi-hazards", Mech. Syst. Signal Pr, 99, 285-305. https://doi.org/10.1016/j.ymssp.2017.06.016.
- Wang, Y., Dai, K., Xu, Y., Zhu, W., Lu, W., Shi, Y., Mei, Z., Xue, S. and Faulkner, K. (2020), "Field testing of wind turbine towers with contact and non-contact vibration measurement methods", J. Perform. Construct. Fac., 34(1), 04019094. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001366.
- Yang, J., He, E.M. and Hu, Y.Q. (2019), "Dynamic modeling and vibration suppression for an offshore wind turbine with a tuned mass damper in floating platform", Appl. Ocean Res., 83, 21-29. https://doi.org/10.1016/j.apor.2018.08.021.
- Yang, Y., Bashir, M., Li, C., Michailides, C. and Wang, J. (2020), "Mitigation of coupled wind-wave-earthquake responses of a 10 MW fixed-bottom offshore wind turbine", Renew. Energy, 1171-1184. https://doi.org/10.1016/j.renene.2020.05.077.
- Yuan, C., Chen, J., Li, J. and Xu, Q. (2017), "Fragility analysis of large-scale wind turbines under the combination of seismic and aerodynamic loads", Renew Energy, 113, 1122-1134. https://doi.org/10.1016/j.renene.2017.06.068.
- Zhang, L., Xue, S., Zhang, R., Xie, L. and Hao, L. (2021), "Simplified multimode control of seismic response of high-rise chimneys using distributed tuned mass inerter systems (TMIS)", Eng Struct, 228. https://doi.org/10.1016/j.engstruct.2020.111550.
- Zhang, R.F. (2014), "Seismic Response Analysis of Base-Isolated Vertical Tank". Shanghai, China, Tongji University.
- Zhang, R.F., Wu, M.J., Pan, C. and Ren, X.S. (2021), " Seismic response reduction of elastoplastic structures with inerter systems", Eng Struct, 230. https://doi.org/10.1016/j.engstruct.2020.111661.
- Zhang, R.F., Zhao, Z.P. and Dai, K.S. (2019), "Seismic response mitigation of a wind turbine tower using a tuned parallel inerter mass system", Eng. Struct., 180, 29-39. https://doi.org/10.1016/j.engstruct.2018.11.020.
- Zhang, R.F., Zhao, Z.P., Pan, C., Ikago, K. and Xue, S.T. (2020), "Damping enhancement principle of inerter system", Struct. Control Heal. Monit., e2523, 1-21. https://doi.org/10.1002/stc.2523.
- Zhang, Z. and Fitzgerald, B. (2020), "Tuned mass-damper-inerter (TMDI) for suppressing edgewise vibrations of wind turbine blades", Eng. Struct., 221, 110928. https://doi.org/10.1016/j.engstruct.2020.110928.
- Zhao, Z., Dai, K., Camara, A., Bitsuamlak, G. and Sheng, C. (2019), "Wind Turbine Tower Failure Modes Under Seismic and Wind Loads", J. Perform. Construct. Fac., 33(2), 04019015. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001279.
- Zhao, Z., Dai, K., Lalonde, E.R., Meng, J., Li, B., Ding, Z. and Bitsuamlak, G. (2019), "Studies on application of scissor-jack braced viscous damper system in wind turbines under seismic and wind loads", Eng. Struct., 196, 109284. https://doi.org/10.1016/j.engstruct.2019.109294.
- Zuo, H., Bi, K. and Hao, H. (2017), "Using multiple tuned mass dampers to control offshore wind turbine vibrations under multiple hazards", Eng. Struct., 141, 303-315. https://doi.org/10.1016/j.engstruct.2017.03.006.