Acknowledgement
This work is supported by the National Natural Science Foundation of China (Grant No. 51975591).
References
- Baker, C., Cheli, F., Orellano, A., Paradot, N., Proppe, C. and Rocchi, D. (2009), "Cross-wind effects on road and rail vehicles", Vehicle Syst Dyn. 47(8), 983-1022. https://doi.org/10.1080/00423110903078794.
- Cheli, F., Ripamonti, F., Rocchi, D. and Tomasini, G. (2010), "Aerodynamic behaviour investigation of the new EMUV250 train to cross wind", J. Wind Eng. Ind. Aerod., 98(4-5), 189-201. https://doi.org/10.1016/j.jweia.2009.10.015.
- Chen, F., Peng, H.R., Ma, X.X., Liang, J.Y., Hao, W. and Pan, X.D. (2019), "Examining the safety of trucks under crosswind at bridge-tunnel section: A driving simulator study", Tunnel. Underground Space Tech., 92, 103034 https://doi.org/10.1016/j.tust.2019.103034.
- Chen, X.D., Liu, T.H., Zhou, X.S., Li, W.H., Xie, T.Z. and Chen, Z.W. (2017), "Analysis of the aerodynamic effects of different nose lengths on two trains intersecting in a tunnel at 350 km/h", Tunnel Underground Space Tech. 66, 77-90. https://doi.org/10.1016/j.tust.2017.04.004.
- Chen, X.Y., Wang, B., Zhu, L.D. and Li, Y.L. (2018), "Numerical study on surface distributed vortex-induced force on a flat-steelbox girder", Eng. Appl. Comp. Fluid. 12(1), 41-56. https://doi.org/10.1080/19942060.2017.1337593.
- Chen, Z.W., Liu, T., Jiang, Z., Guo, Z. and Zhang, J. (2018), "Comparative analysis of the effect of different nose lengths on train aerodynamic performance under crosswind". J. Fluid Struct. 78, 69-85. https://doi.org/10.1016/j.jfluidstructs.2017.12.016.
- Chen, Z.W., Liu, T., Li, M., Yu, M., Lu, Z. and Liu, D. (2019), "Dynamic response of railway vehicles under unsteady aerodynamic forces caused by local landforms", Wind Struct., 29(3), 149-161. https://doi.org/10.12989/was.2019.29.3.149.
- Chen, Z.W., Liu, T., Li, W., Guo, Z. and Xia, Y. (2021), "Aerodynamic performance and dynamic behaviors of a train passing through an elongated hillock region beside a windbreak under crosswinds and corresponding flow mitigation measures", J. Wind Eng. Ind. Aerod., 208, 104434. https://doi.org/10.1016/j.jweia.2020.104434.
- Chen, Z.W., Liu, T.H., Zhou, X.S. and Niu, J.Q. (2017), "Impact of ambient wind on aerodynamic performance when two trains intersect inside a tunnel", J. Wind Eng. Ind. Aerod., 169, 139-155. https://doi.org/10.1016/j.jweia.2017.07.018.
- Deng, E., Yang, W.C., Deng, L., Zhu, Z.H., He, X.H. and Wang, A. (2020), "Time-resolved aerodynamic loads on high-speed trains during running on a tunnel-bridge-tunnel infrastructure under crosswind", Eng. Appl. Comp. Fluid., 14(1), 202-221. https://doi.org/10.1080/19942060.2019.1705396.
- Deng, L., Yan, W.C. and Nie, L. (2019), "A simple corrosion fatigue design method for bridges considering the coupled corrosion-overloading effect", Eng. Struct., 178 309-317. https://doi.org/10.1016/j.engstruct.2018.10.028.
- Diedrichs, B., Sima, M., Orellano, A. and Tengstrand, H. (2007), "Crosswind stability of a high-speed train on a high embankment", Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 221(2), 205-225. https://doi.org/10.1243/0954409JRRT126.
- Guo, W.W., Xia, H., Karoumi, R., Zhang, T. and Li, X.Z. (2015), "Aerodynamic effect of wind barriers and running safety of trains on high-speed railway bridges under cross winds", Wind Struct., 20(2), 213-236. http://dx.doi.org/10.12989/was.2015.20.2.213.
- Guo, Z., Liu, T., Xu, K., Wang, J., Li, W. and Chen, Z. (2020b), "Parametric analysis and optimization of a simple wind turbine in high speed railway tunnels", Renew. Energy. 161, 825-835. https://doi.org/10.1016/j.renene.2020.07.099.
- Guo, Z.J., Liu, T.H., Chen, Z.W., Xia, Y.T., Li, W.H. and Li, L. (2020a), "Aerodynamic influences of bogie's geometric complexity on high-speed trains under crosswind", J. Wind Eng. Ind. Aerod., 196. https://doi.org/10.1016/j.jweia.2019.104053.
- He, X.H., Zhou, L., Chen, Z.W., Jing, H.Q., Zou, Y.F. and Wu, T. (2019), "Effect of wind barriers on the flow field and aerodynamic forces of a train-bridge system", Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 233(3), 283-297. https://doi.org/10.1177/0954409718793220.
- Jiang, Z.H., Liu, T.H., Chen, X.D., Li, W.H., Guo, Z.J. and Niu, J.Q. (2019), "Numerical prediction of the slipstream caused by the trains with different marshalling forms entering a tunnel", J Wind Eng Ind Aerod. 189 276-288. https://doi.org/10.1016/j.jweia.2019.04.002.
- Koroglu, A. and Kabdasli, M.S. (2011), "Experimental Investigation on the Stability of Coastal Embankments Effected by Tsunami", J. Coastal Res. 552-556. https://www.jstor.org/stable/26482232.
- Krajnovic, S. (2008), "Computer simulation of a train exiting a tunnel through a varying crosswind", Int. J. Railway. 1(3), 99-105. https://www.koreascience.or.kr/article/JAKO200835054207739.pdf.
- Li, W., Liu, T., Chen, Z., Guo, Z. and Huo, X. (2020), "Comparative study on the unsteady slipstream induced by a single train and two trains passing each other in a tunnel", J Wind Eng Ind Aerod. 198 104095. https://doi.org/10.1016/j.jweia.2020.104095.
- Li, W.H., Liu, T.H., Huo, X.S., Chen, Z.W., Guo, Z.J. and Li, L. (2019), "Influence of the enlarged portal length on pressure waves in railway tunnels with cross-section expansion", J Wind Eng Ind Aerod. 190 10-22. https://doi.org/10.1016/j.jweia.2019.03.031.
- Li, Y.L., Hu, P., Xu, X.Y. and Qiu, J.J. (2017), "Wind characteristics at bridge site in a deep-cutting gorge by wind tunnel test", J. Wind Eng. Ind. Aerod., 160 30-46. https://doi.org/10.1016/j.jweia.2016.11.002.
- Liu, T., Chen, Z., Zhou, X. and Zhang, J. (2018), "A CFD analysis of the aerodynamics of a high-speed train passing through a windbreak transition under crosswind", Eng. Appl. Comp. Fluid. 12(1), 137-151. https://doi.org/10.1080/19942060.2017.1360211.
- Liu, T.H., Chen, Z.W., Chen, X.D., Xie, T.Z. and Zhang, J. (2017), "Transient loads and their influence on the dynamic responses of trains in a tunnel", Tunnel. Underground Space Tech. 66 121-133. https://doi.org/10.1016/j.tust.2017.04.009.
- Lu, Y.H., Zhang, D.W., Zheng, H.Y., Lu, C., Chen, T.L., Zeng, J. and Wu, P.B. (2019), "Analysis of the aerodynamic pressure effect on the fatigue strength of the carbody of high-speed trains passing by each other in a tunnel", Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 33(8), 783-801. https://doi.org/10.1177/0954409718809469.
- Montenegro, P.A., Calcada, R., Carvalho, H., Bolkovoy, A. and Chebykin, I. (2020), "Stability of a train running over the Volga river high-speed railway bridge during crosswinds", Struct. Infrastruct. Eng., 16(8), 1121-1137. https://doi.org/10.1080/15732479.2019.1684956.
- Niu, J.Q., Zhou, D., Liang, X.F., Liu, S. and Liu, T.H. (2018), "Numerical simulation of the Reynolds number effect on the aerodynamic pressure in tunnels", J. Wind Eng. Ind. Aerod., 173, 187-198. https://doi.org/10.1016/j.jweia.2017.12.013.
- Niu, J.Q., Zhou, D., Liang, X.F., Liu, T.H. and Liu, S. (2017), "Numerical study on the aerodynamic pressure of a metro train running between two adjacent platforms", Tunnel. Underground Space Tech., 65, 187-199. https://doi.org/10.1016/j.tust.2017.03.006.
- Schober, M., Weise, M., Orellano, A., Deeg, P. and Wetzel, W. (2010), "Wind tunnel investigation of an ICE 3 endcar on three standard ground scenarios", J. Wind Eng. Ind. Aerod., 98(6-7), 345-352. https://doi.org/10.1016/j.jweia.2009.12.004.
- Suzuki, M., Tanemoto, K. and Maeda, T. (2003), "Aerodynamic characteristics of train/vehicles under cross winds", J. Wind Eng. Ind. Aerod., 91(1), 209-218. https://doi.org/10.1016/S0167-6105(02)00346-X.
- Tian, H.Q. (2019), "Review of research on high-speed railway aerodynamics in China", Transp. Saf. Environ. 1(1), 1-21. https://doi.org/10.1093/tse/tdz014.
- Wei, L., Zeng, J., Wu, P.B. and Song, C.Y. (2018), "Safety analysis of high speed trains under cross winds using indirect wheel-rail force measuring method", J. Wind Eng. Ind. Aerod., 183, 55-67. https://doi.org/10.1016/j.jweia.2018.10.018.
- Wu, M., Li, Y. and Zhang, W. (2017), "Impacts of wind shielding effects of bridge tower on railway vehicle running performance", Wind Struct., 25(1), 63-77. https://doi.org/10.12989/was.2017.25.1.063.
- Xiang, H.Y., Li, Y.L., Chen, S.R. and Hou, G.Y. (2018), "Wind loads of moving vehicle on bridge with solid wind barrier", Eng. Struct., 156, 188-196. https://doi.org/10.1016/j.engstruct.2017.11.009.
- Yang, W.C., Deng, E., Lei, M.F., Zhang, P.P. and Yin, R.S. (2018), "Flow structure and aerodynamic behavior evolution during train entering tunnel with entrance in crosswind", J. Wind Eng. Ind. Aerod., 175, 229-243. https://doi.org/10.1016/j.jweia.2018.01.018.
- Yang, W.C., Deng, E., Lei, M.F., Zhu, Z.H. and Zhang, P.P. (2019), "Transient aerodynamic performance of high-speed trains when passing through two windproof facilities under crosswinds: A comparative study", Eng. Struct., 188, 729-744. https://doi.org/10.1016/j.engstruct.2019.03.070.
- Yao, Z.Y., Li, X.Y. and Xiao, J.H. (2018), "Characteristics of daily extreme wind gusts on the Qinghai-Tibet Plateau, China", J. Arid. Land. 10(5), 673-685. https://doi.org/10.1007/s40333-018-0094-y.
- Yu, H.L., Wang, B., Li, Y.L. and Zhang, M.J. (2019), "Driving risk of road vehicle shielded by bridge tower under strong crosswind", Nat. Hazards. 96(1), 497-519. https://doi.org/10.1007/s11069-018-3554-y.
- Zhang, J., Gao, G.J., Liu, T.H. and Li, Z.W. (2015), "Crosswind stability of high-speed trains in special cuts", J Cent South Univ. 22(7), 2849-2856. https://doi.org/10.1007/s11771-015-2817-y.
- Zhang, J., He, K., Wang, J., Liu, T., Liang, X. and Gao, G. (2019), "Numerical Simulation of Flow around a High-Speed Train Subjected to Different Windbreak Walls and Yaw Angles", J Appl Fluid Mech. 12(4), 1137-1149. https://doi.org/10.29252/jafm.12.04.29484.
- Zhang, J.Y., Zhang, M.J., Li, Y.L. and Fang, C. (2019), "Aerodynamic effects of subgrade-tunnel transition on highspeed railway by wind tunnel tests", Wind Struct. 28(4), 203-213. https://doi.org/10.12989/was.2019.28.4.203.