DOI QR코드

DOI QR Code

Weibull 통계분석을 이용한 MARK-III LNG CCS의 2차 방벽 FSB 파단강도 표준화 연구

A Study on Standardization of Fracture Strength of Secondary Barrier of FSB in MARK-III LNG CCS using Weibull Distribution

  • 정연제 (부산대학교 조선해양공학과) ;
  • 김희태 (부산대학교 조선해양공학과) ;
  • 김정대 (부산대학교 조선해양공학과) ;
  • 오훈규 ((주)현대중공업 선박연구소) ;
  • 김용태 ((주)현대중공업 선박연구소) ;
  • 박성보 ((주)현대중공업 선박연구소) ;
  • 이제명 (부산대학교 조선해양공학과)
  • Jeong, Yeon-Jae (Department of Naval Architecture and Ocean Engineering, Pusan National University) ;
  • Kim, Hee-Tae (Department of Naval Architecture and Ocean Engineering, Pusan National University) ;
  • Kim, Jeong-Dae (Department of Naval Architecture and Ocean Engineering, Pusan National University) ;
  • Oh, Hoon-Gyu (Maritime Research Institute, Hyundai Heavy Industries Co. Ltd) ;
  • Kim, Yong-Tai (Maritime Research Institute, Hyundai Heavy Industries Co. Ltd) ;
  • Park, Seong-Bo (Maritime Research Institute, Hyundai Heavy Industries Co. Ltd) ;
  • Lee, Jae-Myung (Department of Naval Architecture and Ocean Engineering, Pusan National University)
  • 투고 : 2020.11.09
  • 심사 : 2021.03.12
  • 발행 : 2021.06.20

초록

In this study, the fracture strength of Flexible Secondary Barrier (FSB) composites was standardized by conducting a distribution analysis of the fracture probability, considering that the fracture strength of FSB composites such as glass fiber reinforced composites is relatively large. As the mechanical performance of FSB composites varies with the fiber direction, 20 replicate uniaxial tensile tests were performed for different temperatures ranging from the ambient to cryogenic conditions, considering the actual operating environment of liquefied natural gas. For the probability statistical analysis, the Weibull distribution analysis derived from the weakest link theory was used, considering the large variance in the fracture strength and brittle fracture behavior. The results of the Weibull distribution analysis were used to calculate the standard fracture strength of the FSB composites for different fiber directions. The findings can help ensure the reliability of the FSB mechanical properties in different fiber directions in the design of the secondary barrier and structural analyses.

키워드

과제정보

이 과제는 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음.

참고문헌

  1. Abtew, M.A. Boussu, F. Bruniaux, P. Loghin, C. Cristian, I. Chen, Y. & Wang L., 2018. Influences of fabric density on mechanical and moulding behaviours of 3D warp interlock para-aramid fabrics for soft body armour application. Composite Structures, 204, pp.402-418. https://doi.org/10.1016/j.compstruct.2018.07.101
  2. Adkins, R.E. & Sutton, H.E., 1994. Economics of liquefied natural gas production, transport and distribution for end use as a transportation fuel, In Advances in cryogenic engineering, Springer, Boston, MA, pp.45-54.
  3. An, Q. et al., 2018. Tailored glass fiber interphases via electrophoretic deposition of carbon nanotubes: Fiber and interphase characterization. Composites Science and Technology, 166, pp.131-139. https://doi.org/10.1016/j.compscitech.2018.01.003
  4. ASTM Standards, 2013. C1239-13 Standard practice for reporting uniaxial strength data and estimating weibull distribution parameters for advanced ceramics.
  5. Bai, R. et al., 2020. Shear deformation and energy absorption analysis of flexible fabric in yarn pullout test. Composites Part A: Applied Science and Manufacturing, 128, 105678. https://doi.org/10.1016/j.compositesa.2019.105678
  6. Choi, S.W., Roh, J.U., Kim, M.S., & Lee, W.I., 2012. Analysis of two main LNG CCS(Cargo Containment System) insulation boxes for leakage safety using experimentally defined thermal properties. Applied Ocean Research, 37, pp.72-89. https://doi.org/10.1016/j.apor.2012.04.002
  7. Han, S. et al., 2009. Experimental study on the structural behavior of secondary barrier of Mark-III LNG CCS, In ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering, pp.101-107.
  8. ISO, E. 2286-2: 1998. Rubber-or plastics-coated fabrics-determination of roll characteristics-Part, 2.
  9. ISO, P. 1421: 2001. Rubber-or plastics-coated fabrics-determination of tensile strength andelongation at break.
  10. Nam, S., Yu, Y.H., Choi, I. & Bang, C.S., 2014. Fracture toughness improvement of polyurethane adhesive joints with chopped glass fibers at cryogenic temperatures. Composite Structures, 107, pp.522-527. https://doi.org/10.1016/j.compstruct.2013.08.015
  11. Oh, D.J., Lee, J.M., Chun, M.S. & Kim, M.H., 2017. Reliability evaluation of a LNGC insulation system with a metallic secondary barrier. Composite Structures, 171, pp.43-52. https://doi.org/10.1016/j.compstruct.2017.03.040
  12. Olteanu, D. & Freeman, L., 2010. The evaluation of median-rank regression and maximum likelihood estimation techniques for a two-parameter Weibull distribution. Quality Engineering, 22(4), pp.256-272. https://doi.org/10.1080/08982112.2010.505219
  13. Osada, T., Nakai, A. & Hamada, H., 2003. Initial fracture behavior of satin woven fabric composites. Composite structures, 61(4), pp.333-339. https://doi.org/10.1016/S0263-8223(03)00058-8
  14. Pan, N. & Yoon, M.Y., 1993. Behavior of yarn pullout fromwoven fabrics: Theoretical and experimental. Textile Research Journal, 63(11), pp.629-637. https://doi.org/10.1177/004051759306301103
  15. Pan, N., 1996. Analysis of woven fabric strengths: prediction of fabric strength under uniaxial and biaxial extensions. Composites Science and Technology, 56(3), pp.311-327. https://doi.org/10.1016/0266-3538(95)00114-X
  16. Peirce, F.T., 1926. Tensile tests for cotton yarns:"the weakest link" theorems on the strength of long and of composite specimens. The Journal of the Textile Institute, 17, pp.355-368.
  17. Ristaniemi, A. Stenroth, L. Mikkonen, S. & Korhonen, R.K., 2018. Comparison of elastic, viscoelastic and failure tensile material properties of knee ligaments and patellar tendon. Journal of biomechanics, 79, pp.31-38. https://doi.org/10.1016/j.jbiomech.2018.07.031
  18. Shahpurwala, A.A. & Schwartz, P., 1989. Modeling woven fabric tensile strength using statistical bundle theory. Textile Research Journal, 59(1), pp.26-32 https://doi.org/10.1177/004051758905900104
  19. Szczesniak, L, Rachocki, A. & Tritt-Goc, J., 2008. Glass transition temperature and thermal decomposition of cellulose powder. Cellulose, 15(3), pp.445-451. https://doi.org/10.1007/s10570-007-9192-2
  20. Yoon, S.H., 2011. Design of the composite sandwich panel of the hot pad for the bonding of large area adhesive films. Composite structures, 94(1), pp.102-113. https://doi.org/10.1016/j.compstruct.2011.07.012