DOI QR코드

DOI QR Code

Numerical modeling of hygrothermal effect on the dynamic behavior of hybrid composite plates

  • Henni, Mohamed A. Ben (MATIM, Universite de Reims Champagne-Ardenne - Campus du Moulin de la Housse BP 1039 - 51687 Reims cedex 2) ;
  • Abbes, Boussad (MATIM, Universite de Reims Champagne-Ardenne - Campus du Moulin de la Housse BP 1039 - 51687 Reims cedex 2) ;
  • Daouadji, T. Hassaine (Department of Civil Engineering, Ibn Khaldoun University) ;
  • Abbes, Fazilay (MATIM, Universite de Reims Champagne-Ardenne - Campus du Moulin de la Housse BP 1039 - 51687 Reims cedex 2) ;
  • Adim, Belkacem (Laboratory of Geomatics and Sustainable Development, Ibn Khaldoun University of Tiaret)
  • Received : 2020.03.19
  • Accepted : 2021.05.18
  • Published : 2021.06.25

Abstract

In this work, the hygrothermal effect on the behavior of hybrid laminated composite plate has been investigated using high-order shear deformation theory and finite element analysis. The equation of motion of the laminated plate is obtained using Hamilton's principle, and the mathematical expressions are obtained using Navier's solution for different boundary conditions. The engineering moduli for the different cases: non-hybrid composite and hybrid composite are calculated using the law of mixtures. The mechanical properties of hybrid composite plate are considered as temperature and humidity dependent. The results obtained with finite element analysis using Abaqus and analytical approach show a good agreement in predicting the fundamental frequencies of hybrid cross-ply laminated plates under hygrothermal loading.

Keywords

Acknowledgement

This research was supported by the French Ministry of Foreign Affairs and International Development (MAEDI) and Ministry of National Education, Higher Education and Research (MENESR) and by the Algerian Ministry of Higher Education and Scientific Research under Grant No. PHC Tassili 17MDU992. Their support is greatly appreciated.

References

  1. Adim, B., Hassaine Daouadji, T. and Rabahi, A. (2016), "A simple higher order shear deformation theory for mechanical behavior of laminated composite plates", Int. J. Adv. Struct. Eng., 8, 103-117. https://doi.org/10.1007/s40091-016-0109-x.
  2. Adim, B., Daouadji, T. H., Rabia, B. and Lazreg, H. (2016a), "An efficient and simple higher order shear deformation theory for bending analysis of composite plates under various boundary conditions", Earthq. Struct., 11(1), 63-82. https://doi.org/10.12989/eas.2016.11.1.063.
  3. Adim, B., Hassaine Daouadji, T., Rabia, B. and Hadji, L. (2016b), "Buckling and free vibration analysis of laminated composite plates using an efficient and simple higher order shear deformation theory", Mechanics & Industry, 17, 512. https://doi.org/10.1051/meca/2015112.
  4. Ameur, M., Tounsi, A., Benyoucef, S., Bouiadjra, M.B. and Bedia, E.A. (2009), "Stress analysis of steel beams strengthened with a bonded hygrothermal aged composite plate", Int. J. Mech. Mater. Des., 5(2), 143-156. https://doi.org/10.1007/s10999-008-9090-2.
  5. Belkacem, A., Tahar, H.D., Abderrezak, R., Amine, B.M., Mohamed, Z. and Boussad, A. (2018), "Mechanical buckling analysis of hybrid laminated composite plates under different boundary conditions", Struct. Eng. Mech., 66(6), 761-769. https://doi.org/10.12989/sem.2018.66.6.761.
  6. Benhenni, M. A., Daouadji, T. H., Abbes, B., Adim, B., Li, Y. and Abbes, F. (2018a), "Dynamic analysis for anti-sym metric cross-ply and angle-ply laminates for simply support ed thick hybrid rectangular plates", Adv. Mater. Res., 7(2), 119-136. https://doi.org/10.12989/amr.2018.7.2.119.
  7. Benhenni, M.A., Daouadji, T.H., Abbes, B., Li, Y.M. and Abbes, F. (2018b), "Analytical and numerical results for free vibration of laminated composites plates", Int. J. Chem. Mater. Biomolecular Sci., 12(6), 300-304. https://doi.org/10.5281/zenodo.1340599.
  8. Benhenni, M.A., Adim, B., Daouadji, T.H., Abbes, B., Abes, F., Li, Y., Bouzidane, A. (2019a), "A Comparison of Closed-Form and Finite-Element Solutions for the Free Vibration of Hybrid Cross-Ply Laminated Plates", Mech. Compos. Mater., 55, 181-194. https://doi.org/10.1007/s11029-019-09803-2.
  9. Benhenni, M.A., Daouadji, T.H., Abbes, B., Abbes, F., Li, Y. and Adim, B. (2019b), "Numerical analysis for free vibration of hybrid laminated composite plates for different boundary conditions", Struct. Eng. Mech., 70(5), 535-549. https://10.12989/sem.2019.70.5.535.
  10. Bouakaz, K., Daouadji, T.H., Meftah, S.A., Ameur, M., Tounsi, A., and Bedia, E.A. (2014), "A numerical analysis of steel beams strengthened with composite materials", Mech. Compos. Mater., 50(4), 491-500. https://doi.org/10.1007/s11029-014-9435-x.
  11. Bouderba, B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2016), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., 58(3), 397-422. https://doi.org/10.12989/sem.2016.58.3.397.
  12. Carrera, E. (1998), "Evaluation of layerwise mixed theories for laminated plates analysis", AIAA J., 36(5), 830-839. https://doi.org/10.2514/2.444.
  13. Daouadji, T.H. and Adim, B. (2017), "Mechanical behaviour of FGM sandwich plates using a quasi-3Dhigher order shear and normal deformation theory", Struct. Eng. Mech., 61(1), 49-63. https://doi.org/10.12989/sem.2017.61.1.049.
  14. Gossard, M.L., Seide, P. and Roberts, W.M. (1952), "Thermal buckling of plates", NACA TN, No. 2771.
  15. Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235.
  16. Hao, P., Yuan, X., Liu, C., Wang, B., Liu, H., Li, G. and Niu, F. (2018), "An integrated framework of exact modeling, isogeometric analysis and optimization for variable-stiffness composite panels", Comput. Method. Appl. M., 339, 205-238, https://doi.org/10.1016/j.cma.2018.04.046.
  17. Hao, P., Yang, H., Wang, Y., Liu, X., Wang, B. and Li, G. (2021), "Efficient reliability-based design optimization of composite structures via isogeometric analysis", Reliab. Eng. Syst. Saf., 209, 107465, https://doi.org/10.1016/j.ress.2021.107465
  18. Hassaine Daouadji, T., Benferhat, R. and Belkacem, A. (2016), "Bending analysis of an imperfect advanced composite plates resting on the elastic foundations", Coupled Syst. Mech., 5(3), 269-285. https://doi.org/10.12989/csm.2016.5.3.269.
  19. Heldenfels, R.R. and Roberts, W.M. (1952), "Experimental and theoretical determination of thermal stresses in a flat plate", NACA TN, No. 2769.
  20. Kumar, R. and Patil, H.S. (2013), "Hygrothermally Induced Nonlinear Free Vibration Response of Nonlinear Elastically Supported Laminated Composite Plates with Random System Properties: Stochastic Finite Element Micromechanical Model", Front. Aerosp. Eng., 2(2), 143-156.
  21. Kumar, R., Patil, H. S. and Lal, A. (2013), "Hygrothermoelastic free vibration response of laminated composite plates resting on elastic foundations with random system properties: Micromechanical model", J. Thermoplastic Compos. Mater., 26(5), 573-604. https://doi.org/10.1177/0892705711425851.
  22. Liu, C.F. and Huang, C.H. (1996), "Free vibration of composite laminated plates subjected to temperature changes", Comput. Struct., 60(1), 95-101. https://doi.org/10.1016/0045-7949(95)00358-4.
  23. Naidu, S. and Sinha, P.K. (2007), "Nonlinear free vibration analysis of laminated composite shells in hygrothermal environments", Compos. Struct., 77(4), 475-483. https://10.1016/j.compstruct.2005.08.002.
  24. Panduro, R.M.R. and Mantari, J.L. (2017), "Hygro-thermomechanical behavior of classical composites using a new trigonometrical shear strain shape function and a compact layerwise approach", Compos. Struct., 160, 378-391. https://doi.org/10.1016/j.compstruct.2016.10.014.
  25. Pan, Z., Gu, B. and Sun, B. (2016), "Thermo-mechanical behaviors of 3-D braided composite material subject to high strain rate compressions under different temperatures", Mech. Adv. Mater. Struct., 23(4), 385-401. https://doi.org/10.1080/15376494.2014.981619.
  26. Patel, B.P., Ganapathi, M. and Makhecha, D.P. (2002), "Hygrothermal effects on the structural behaviour of thick composite laminates using higher-order theory", Compos. Struct., 56(1), 25-34. https://doi.org/10.1016/S0263-8223(01)00182-9.
  27. Reddy, J.N. and Hsu, Y.S. (1980), "Effects of shear deformation and anisotropy on the thermal bending of layered composite plates", J. Therm. Stresses, 3(4), 475-493. https://doi.org/10.1080/01495738008926984.
  28. Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719.
  29. Sai Ram, K.S. and Sinha, P.K. (1991), "Hygrothermal effects on the bending characteristics of laminated composite plates", Comput. Struct., 40(4), 1009-1015. https://doi.org/10.1016/0045-7949(91)90332-G.
  30. Tlidji, Y., Daouadji, T.H., Hadji, L., Tounsi, A. and Bedia, E.A.A. (2014), "Elasticity solution for bending response of functionally graded sandwich plates under thermomechanical loading", J. Therm. Stresses, 37(7), 852-869. https://doi.org/10.1080/01495739.2014.912917.
  31. Tounsi, A. and Amara, K. (2005), "Stiffness degradation in hygrothermal aged cross-ply laminate with transverse cracks", AIAA J., 43(8), 1836-1843. https://doi.org/10.2514/1.3925.
  32. Tungikar, V.B. and Rao, K.M. (1994), "Three-dimensional exact solution of thermal stresses in rectangular composite laminate", Compos. Struct., 27(4), 419-430. https://doi.org/10.1016/0263-8223(94)90268-2.
  33. Wang, B., Ma, X., Tian, K., Hao, P., Zhou, Y. and Quan, D. (2019), "Concurrent Patch Optimization of Hybrid Composite Plates Based on Proper Orthogonal Decomposition", AIAA J., 57(11), https://doi.org/10.2514/1.J058064
  34. Whitney, J.M. and Ashton, J.E. (1971), "Effect of environment on the elastic response of layered composite plates", AIAA J., 9(9), 1708-1713. https://doi.org/10.2514/3.49976.
  35. Wu, X., Zheng, H., Liu, Y. and Leng, J. (2010), "Thermomechanical Property of Epoxy Shape Memory Polymers", Int. J. Modern Phys. B, 24(15-16), 2386-2391. https://doi.org/10.1142/S0217979210064976.
  36. Zenkour, A.M., Allam, M.N.M. and Radwan, A.F. (2014), "Effects of hygrothermal conditions on cross-ply laminated plates resting on elastic foundations", Arch. Civil Mech. Eng., 14(1), 144-159. https://doi.org/10.1016/j.acme.2013.07.008