DOI QR코드

DOI QR Code

Numerical Web Model for Quality Management of Concrete based on Compressive Strength

압축강도 기반의 콘크리트 품질관리를 위한 웹 전산모델 개발

  • Received : 2021.04.19
  • Accepted : 2021.05.17
  • Published : 2021.06.20

Abstract

Concrete quality is mainly managed through the reliable prediction and control of compressive strength. Although related industries have established a relevant datasets based on the mixture proportions and compressive strength gain, whereas they have not been shared due to various reasons including technology leakage. Consequently, the costs and efforts for quality control have been wasted excessively. This study aimed to develop a web-based numerical model, which would present diverse optimal values including concrete strength prediction to the user, and to establish a sustainable database (DB) collection system by inducing the data entered by the user to be collected for the DB. The system handles the overall technology related to the concrete. Particularly, it predicts compressive strength at a mean accuracy of 89.2% by applying the artificial neural network method, modeled based on extensive DBs.

콘크리트의 품질관리는 주로 압축강도의 예측과 제어를 뜻한다. 이를 위해 관련 업계에서는 콘크리트 배합설계 및 재령별 강도에 관한 상당수의 데이터베이스를 구축하고 있으나, 기술유출 등의 이유로 공유되지 못해 결과적으로 품질관리를 위한 비용과 노력은 과도하게 낭비되고 있다. 본 연구에서는 웹 기반 전산모델 프로그램을 개발하여 사용자에게 콘크리트의 강도 예측 결과를 비롯한 다양한 최적 값을 제시하고, 사용자가 입력한 배합특성과 결과는 다시 DB로 수집될 수 있도록 유도하는 지속가능한 DB 수집 시스템을 구축한다. 해당 프로그램은 콘크리트 관련 전반적 기술을 다루고 있으며, 특히 압축강도의 예측은 다수의 DB를 기반으로 모델링된 인공신경망 기법을 적용하여 평균 89.2% 수준의 정확도에서 예측 값을 제공한다.

Keywords

Acknowledgement

This work was supported by the GRRC program of Gyeonggi province. [GRRC KGU 2020-B01, Research on Intelligent Industrial Data Analytics]

References

  1. Aroso ME, Aroso MH. Reducing costs through concrete quality control. Innovative Housing Practices: Better Housing Through Innovative Technology and Financing. 1989:265-70. https://doi.org/10.1016/B978-0-08-037884-8.50045-7
  2. Song J, Yu JH, Kim K. On-site quality control support tools based on mobile BIM-focusing on quality management work. Korean Journal of Construction Engineering and Management. 2020;21(6):27-37. https://doi.org/10.6106/KJCEM.2020.21.6.027
  3. Nikbin IM, Rahimi R S, Allahyari H, Damadi M. A comprehensive analytical study on the mechanical properties of concrete containing waste bottom ash as natural aggregate replacement. Construction and Building Materials. 2016 Sep;121:746-59. https://doi.org/10.1016/j.conbuildmat.2016.06.078
  4. Ji GB, Mun JH, Yang KH. Evaluation of mechanical properties of lightweight concrete using bottom ash aggregates and foam. Journal of the Korea Concrete Institute. 2019 Aug;31(4):375-84. https://doi.org/10.4334/JKCI.2019.31.4.375
  5. Cherkassky V, Filip M. Learning from data: concepts, theory, and methods. 1st ed. New York: John Wiley & Sons; 2007. 560 p.
  6. Mun JS. Generalized model for compressive strength development of concrete considering the addition of supplementary cementitious materials and curing temperatures. [dissertation]. [Suwon (Korea)]: Kyonggi University; 2016. 168 p.