DOI QR코드

DOI QR Code

ERTAIN k-FRACTIONAL CALCULUS OPERATORS AND IMAGE FORMULAS OF GENERALIZED k-BESSEL FUNCTION

  • Agarwal, P. (Department of Mathematics, Anand International College of Engineering, Nonlinear Dynamics Research Center (NDRC), Ajman University, International Center for Basic and Applied Sciences) ;
  • Suthar, D.L. (Department of Mathematics, Wollo University) ;
  • Tadesse, Hagos (Department of Mathematics, Wollo University) ;
  • Habenom, Haile (Department of Mathematics, Wollo University)
  • Received : 2019.10.17
  • Accepted : 2020.06.26
  • Published : 2021.06.25

Abstract

In this paper, the Saigo's k-fractional integral and derivative operators involving k-hypergeometric function in the kernel are applied to the generalized k-Bessel function; results are expressed in term of k-Wright function, which are used to present image formulas of integral transforms including beta transform. Also special cases related to fractional calculus operators and Bessel functions are considered.

Keywords

Acknowledgement

Praveen Agarwal was paying thanks to the SERB (project TAR/2018/000001), DST(project DST/INT/DAAD/P-21/2019, and INT/RUS/RFBR/308) and NBHM (DAE)(project 02011/12/2020 NBHM(R.P)/RD II/7867)

References

  1. P. Agarwal, M. Chand, J. Choi and G. Singh, Certain fractional integrals and image formulas of generalized k- Bessel function, Commun. Korean Math. Soc. 33(2) (2018), 423-436. https://doi.org/10.4134/CKMS.C170056
  2. P. Agarwal, M. Chand and G. Singh, Certain fractional kinetic equations involving the product of generalized k-Bessel function, Alexandria Engineering Journal 55 (2016), 3053-3059. https://doi.org/10.1016/j.aej.2016.07.025
  3. H. Amsalu and D.L. Suthar, Generalized fractional integral operators involving Mittag-Leffler function, Abstr. Appl. Anal. (2018), Article ID 7034124, 8 pages.
  4. R. Diaz, C. Ortiz and E. Pariguan, On the k-gamma q-distribution, Cent. Eur. J. Math. 8 (2010), 448-458. https://doi.org/10.2478/s11533-010-0029-0
  5. R. Diaz and E. Pariguan, On hypergeometric functions and Pochhammer k-symbol, Divulg. Mat. 15(2) (2007), 179-192.
  6. R. Diaz and C. Teruel, q, k-Generalized gamma and beta functions, J. Nonlinear Math. Phys. 12(1) (2005), 118-134. https://doi.org/10.2991/jnmp.2005.12.1.10
  7. G.A. Dorrego , An alternative definition for the k-Riemann-Liouville fractional derivative, Applied Mathematical Sciences 9(10) (2015), 481-491. https://doi.org/10.12988/ams.2015.411893
  8. A. Erdelyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher Transcendental Functions, Vol.2, McGraw-Hill, NewYork, Toronto, London, 1953.
  9. K.S. Gehlot, Differential equation of k-Bessels function and its properties, Nonl. Analysis and Differential Equations 2(2) (2014), 61-67. https://doi.org/10.12988/nade.2014.3821
  10. K.S. Gehlot, Recurrence relations of k-Bessels function, Thai J. Math., to apear: http;//thaijmath.in.cmu.ac.th/index.php/thaijmath/article/view/1042/717.
  11. K.S. Gehlot and J.C. Prajapati, Fractional calculus of generalized k-Wright function, Journal of fractional calculus and applications 4(2) (2013), 283-289.
  12. K.S. Gehlot and S.D. Purohit, Integral representations of the k-Bessel's function, Honam Math. J. 38(1) (2016), 17-23. https://doi.org/10.5831/HMJ.2016.38.1.17
  13. K.S. Gehlot and S.D. Purohit, Fractional calculus of k- Bessel function, Acta Universitatis Apulensis 38 (2014), 273-278.
  14. A. Gupta and C.L. Parihar, Saigo's k-Fractional calculus operators, Malaya J. Mat. 5(3) (2017), 494-504.
  15. S.R. Mondal, Representation formulae and monotonicity of the generalized k-Bessel functions, arXiv:1611.07499 [math.CA], (2016).
  16. S.R. Mondal and M.S. Akel1, Differential equation and inequalities of the generalized k-Bessel functions, J. Inequal. Appl. 2018:175, (2018), https://doi.org/10.1186/s13660-018-1772-1.
  17. S. Mubeen and G.M. Habibullah, k-Fractional integrals and application, Int. J. Contemp. Math. Science 7(2) (2012), 89-94.
  18. S. Mubeen and G.M. Habibullah, An integral representation of some k-hypergeometric functions, Int. J. Contemp. Math. Science 7(4) (2012), 203-207.
  19. S. Mubeen and A. Rehman, A note on k-gamma function and Pochhamer k-symbol, Journal of inequalities and Mathematical Sciences 6(2) (2014), 93-107.
  20. K.S. Nisar, W.A. Khan and A.H. Abusufian, Certain integral transforms of k- Bessel function, Palest. J. Math. 7(1) (2018), 161-166.
  21. S.D. Purohit, D.L. Suthar and S.L. Kalla, Marichev-Saigo-Maeda fractional integration operators of the Bessel functions, Matematiche (Catania) 67(1) (2012), 12-32.
  22. M. Saigo, A Remark on integral operators involving the Gauss hypergeometric functions, Math .Rep. Kyushu Univ 11 (1978), 135-143.
  23. B.S. Shaktawat, D.S. Rawat and R.K. Gupta, On generalized fractional calculus of the generalized k-Bessel function, J. Rajasthan Acad. Phys. Sci. 16(1) (2017), 9-19.
  24. D.L. Suthar, Composition Formulae for the k-Fractional Calculus Operators Associated with k-Wright Function, Journal of Mathematics, (2020), Article ID 5471715, 1-9.
  25. D.L. Suthar, D. Baleanu, S.D. Purohit and F. U,car, Certain k-fractional calculus operators and image formulas of k-Struve function. AIMS Mathematics 5(3) (2020), 1706-1719. https://doi.org/10.3934/math.2020115
  26. D.L. Suthar and M. Ayene, Generalized fractional integral formulas for the k-Bessel function, Journal of Mathematics (2018), Article ID 5198621, 8 pages, doi.org/10.1155/2018/5198621.