Acknowledgement
Praveen Agarwal was paying thanks to the SERB (project TAR/2018/000001), DST(project DST/INT/DAAD/P-21/2019, and INT/RUS/RFBR/308) and NBHM (DAE)(project 02011/12/2020 NBHM(R.P)/RD II/7867)
References
- P. Agarwal, M. Chand, J. Choi and G. Singh, Certain fractional integrals and image formulas of generalized k- Bessel function, Commun. Korean Math. Soc. 33(2) (2018), 423-436. https://doi.org/10.4134/CKMS.C170056
- P. Agarwal, M. Chand and G. Singh, Certain fractional kinetic equations involving the product of generalized k-Bessel function, Alexandria Engineering Journal 55 (2016), 3053-3059. https://doi.org/10.1016/j.aej.2016.07.025
- H. Amsalu and D.L. Suthar, Generalized fractional integral operators involving Mittag-Leffler function, Abstr. Appl. Anal. (2018), Article ID 7034124, 8 pages.
- R. Diaz, C. Ortiz and E. Pariguan, On the k-gamma q-distribution, Cent. Eur. J. Math. 8 (2010), 448-458. https://doi.org/10.2478/s11533-010-0029-0
- R. Diaz and E. Pariguan, On hypergeometric functions and Pochhammer k-symbol, Divulg. Mat. 15(2) (2007), 179-192.
- R. Diaz and C. Teruel, q, k-Generalized gamma and beta functions, J. Nonlinear Math. Phys. 12(1) (2005), 118-134. https://doi.org/10.2991/jnmp.2005.12.1.10
- G.A. Dorrego , An alternative definition for the k-Riemann-Liouville fractional derivative, Applied Mathematical Sciences 9(10) (2015), 481-491. https://doi.org/10.12988/ams.2015.411893
- A. Erdelyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher Transcendental Functions, Vol.2, McGraw-Hill, NewYork, Toronto, London, 1953.
- K.S. Gehlot, Differential equation of k-Bessels function and its properties, Nonl. Analysis and Differential Equations 2(2) (2014), 61-67. https://doi.org/10.12988/nade.2014.3821
- K.S. Gehlot, Recurrence relations of k-Bessels function, Thai J. Math., to apear: http;//thaijmath.in.cmu.ac.th/index.php/thaijmath/article/view/1042/717.
- K.S. Gehlot and J.C. Prajapati, Fractional calculus of generalized k-Wright function, Journal of fractional calculus and applications 4(2) (2013), 283-289.
- K.S. Gehlot and S.D. Purohit, Integral representations of the k-Bessel's function, Honam Math. J. 38(1) (2016), 17-23. https://doi.org/10.5831/HMJ.2016.38.1.17
- K.S. Gehlot and S.D. Purohit, Fractional calculus of k- Bessel function, Acta Universitatis Apulensis 38 (2014), 273-278.
- A. Gupta and C.L. Parihar, Saigo's k-Fractional calculus operators, Malaya J. Mat. 5(3) (2017), 494-504.
- S.R. Mondal, Representation formulae and monotonicity of the generalized k-Bessel functions, arXiv:1611.07499 [math.CA], (2016).
- S.R. Mondal and M.S. Akel1, Differential equation and inequalities of the generalized k-Bessel functions, J. Inequal. Appl. 2018:175, (2018), https://doi.org/10.1186/s13660-018-1772-1.
- S. Mubeen and G.M. Habibullah, k-Fractional integrals and application, Int. J. Contemp. Math. Science 7(2) (2012), 89-94.
- S. Mubeen and G.M. Habibullah, An integral representation of some k-hypergeometric functions, Int. J. Contemp. Math. Science 7(4) (2012), 203-207.
- S. Mubeen and A. Rehman, A note on k-gamma function and Pochhamer k-symbol, Journal of inequalities and Mathematical Sciences 6(2) (2014), 93-107.
- K.S. Nisar, W.A. Khan and A.H. Abusufian, Certain integral transforms of k- Bessel function, Palest. J. Math. 7(1) (2018), 161-166.
- S.D. Purohit, D.L. Suthar and S.L. Kalla, Marichev-Saigo-Maeda fractional integration operators of the Bessel functions, Matematiche (Catania) 67(1) (2012), 12-32.
- M. Saigo, A Remark on integral operators involving the Gauss hypergeometric functions, Math .Rep. Kyushu Univ 11 (1978), 135-143.
- B.S. Shaktawat, D.S. Rawat and R.K. Gupta, On generalized fractional calculus of the generalized k-Bessel function, J. Rajasthan Acad. Phys. Sci. 16(1) (2017), 9-19.
- D.L. Suthar, Composition Formulae for the k-Fractional Calculus Operators Associated with k-Wright Function, Journal of Mathematics, (2020), Article ID 5471715, 1-9.
- D.L. Suthar, D. Baleanu, S.D. Purohit and F. U,car, Certain k-fractional calculus operators and image formulas of k-Struve function. AIMS Mathematics 5(3) (2020), 1706-1719. https://doi.org/10.3934/math.2020115
- D.L. Suthar and M. Ayene, Generalized fractional integral formulas for the k-Bessel function, Journal of Mathematics (2018), Article ID 5198621, 8 pages, doi.org/10.1155/2018/5198621.