References
- Akbas, S.D. (2014), "Free vibration of axially functionally graded beams in thermal environment", Int. J. Eng. Appl. Sci., 6(3), 37-51. https://doi.org/10.24107/ijeas.251224.
- Akbas, S.D. (2015a), "Post-buckling analysis of axially functionally graded three-dimensional beams", Int. J. Appl. Mech., 7(03), 1550047. https://doi.org/10.1142/S1758825115500477.
- Akbas, S.D. (2015b), "Free Vibration Analysis of Edge Cracked Functionally Graded Beams Resting on Winkler-Pasternak Foundation", Int. J. Eng. Appl. Sci., 7(3), 1-15. https://doi.org/10.24107/ijeas.251252.
- Akbas, S.D. (2017), "Stability of a non-homogenous porous plate by using generalized differantial quadrature method", Int. J. Eng. Appl. Sci., 9(2), 147-155. https://doi.org/10.24107/ijeas.322375.
- Akbas, S.D. (2018a), "Forced vibration analysis of functionally graded porous deep beams", Compos. Struct., 186, 293-302. https://doi.org/10.1016/j.compstruct.2017.12.013.
- Akbas, S.D. (2018b), "Forced vibration analysis of cracked nanobeams", J. Braz. Soc. Mech. Sci. Eng., 40(8), 1-11. https://doi.org/10.1007/s40430-018-1315-1.
- Akbas, S.D. (2018c), "Geometrically nonlinear analysis of functionally graded porous beams", Wind Struct., 27(1), 59-70. https://doi.org/10.12989/was.2018.27.1.059.
- Akbas, S.D. (2018d), "Investigation on free and forced vibration of a bi-material composite beam", J. Polytechnic-Politeknik Dergisi, 21(1), 65-73. https://doi.org/10.2339/politeknik.386841.
- Akbas, S.D. (2019a), "Forced vibration analysis of functionally graded sandwich deep beams", Coupled Syst. Mech., 8(3), 259-271. http://dx.doi.org/10.12989/csm.2019.8.3.259.
- Akbas, S.D. (2019b), "Hygro-thermal nonlinear analysis of a functionally graded beam", J. Appl. Comput. Mech., 5(2), 477-485. http://dx.doi.org/10.22055/JACM.2018.26819.1360.
- Akbas, S.D. (2019c), "Hygro-thermal post-buckling analysis of a functionally graded beam", Coupled Syst. Mech., 8(5), 459-471. http://dx.doi.org/10.12989/csm.2019.8.5.459.
- Akbas, S.D., (2020a), "Dynamic responses of laminated beams under a moving load in thermal environment", Steel Compos. Struct., 35(6), 729-737. https://doi.org/10.12989/scs.2020.35.6.729.
- Akbas, S.D. (2020b), "Geometrically nonlinear analysis of axially functionally graded beams by using finite element method", J. Comput. Appl. Mech., 51(2), 411-416. http://dx.doi.org/10.22059/JCAMECH.2020.309019.548.
- Akbas, S.D. (2021a), "Forced Vibration Responses of Axially Functionally Graded Beams by using Ritz Method", J. Appl. Comput. Mech., 7(1), 109-115. http://dx.doi.org/10.22055/JACM.2020.34865.2491.
- Akbas, S.D. (2021b), "Forced vibration analysis of a fiber reinforced composite beam", Adv. Mater. Res., 10(1), 57. http://dx.doi.org/10.12989/amr.2021.10.1.057.
- Akgoz, B. and Civalek, O. (2013), "Buckling analysis of functionally graded microbeams based on the strain gradient theory", Acta Mechanica, 224(9), 2185-2201. https://doi.org/10.1007/s00707-013-0883-5.
- Akgoz, B. and Civalek, O. (2015), "A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory", Acta Mechanica, 226(7), 2015, 2277-2294. https://doi.org/10.1007/s00707-015-1308-4
- Akgoz, B. and Civalek, O. (2016), "Bending analysis of embedded carbon nanotubes resting on an elastic foundation using strain gradient theory", Acta Astronautica, 119, 1-12. https://doi.org/10.1016/j.actaastro.2015.10.021.
- Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Model., 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006.
- Aydogdu, M., Arda, M. and Filiz, S. (2018), "Vibration of axially functionally graded nano rods and beams with a variable nonlocal parameter", Adv. Nano Res., 6(3), 257-278. https://doi.org/10.12989/anr.2018.6.3.257.
- Benahmed, A., Fahsi, B., Benzair, A., Zidour, M., Bourada, F. and Tounsi, A. (2019), "Critical buckling of functionally graded nanoscale beam with porosities using nonlocal higher-order shear deformation", Struct. Eng. Mech., 69(4), 457-466. https://doi.org/10.12989/sem.2019.69.4.457.
- Chen, X.L. and Liew, K.M. (2004), "Buckling of rectangular functionally graded material plates subjected to nonlinearly distributed in-plane edge loads", Smart Mater. Struct., 13(6), 1430. https://doi.org/10.1088/0964-1726/13/6/014.
- Civalek, O. (2019), "Vibration of functionally graded carbon nanotube reinforced quadrilateral plates using geometric transformation discrete singular convolution method", Int. J. Numer. Method. Eng., 11, 205-216,2019. https://doi.org/10.1002/nme.6254.
- Civalek, O. and Demir, C. (2011), "Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory", Appl. Math. Model., 35(5), 2053-2067. https://doi.org/10.1016/j.apm.2010.11.004.
- Civalek, O. and Demir, C. (2016), "A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method", Appl. Math. Comput., 289, 335-352. https://doi.org/10.1016/j.amc.2016.05.034.
- Civalek, O., Uzun, B., Yayli, M.O. and Akgoz, B. (2020), "Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method", Eur. Phys. J. Plus, 135: 381 https://doi.org/10.1140/epjp/s13360-020-00385-w.
- Ebrahimi, F. and Jafari, A. (2016), "A higher-order thermomechanical vibration analysis of temperature-dependent FGM beams with porosities", J. Eng., 2016. http://dx.doi.org/10.1155/2016/9561504.
- Ebrahimi, F., Barati, M.R. and Civalek, O. (2020), "Application of Chebyshev-Ritz method for static stability and vibration analysis of nonlocal microstructure-dependent nanostructures", Eng. with Comput., 36, 2020, 953-964. https://doi.org/10.1007/s00366-019-00742-z.
- Fazzolari, F.A. (2018), "Generalized exponential, polynomial and trigonometric theories for vibration and stability analysis of porous FG sandwich beams resting on elastic foundations", Compos. Part B: Eng., 136, 254-271. https://doi.org/10.1016/j.compositesb.2017.10.022.
- Gurses, M., Akgoz, B. and Civalek, O. (2012), "Mathematical modeling of vibration problem of nano-sized annular sector plates using the nonlocal continuum theory via eight-node discrete singular convolution transformation", Appl. Math. Comput., 219, 3226-3240. https://doi.org/10.1016/j.amc.2012.09.062.
- Jouneghani, F.Z., Dimitri, R. and Tornabene, F. (2018), "Structural response of porous FG nanobeams under hygro-thermomechanical loadings", Compos. Part B: Eng., 152, 71-78. https://doi.org/10.1016/j.compositesb.2018.06.023.
- Kirlangic, O. and Akbas, S.D. (2020), "Comparison study between layered and functionally graded composite beams for static deflection and stress analyses", J. Comput. Appl. Mech., 51(2), 294-301. http://dx.doi.org/10.22059/JCAMECH.2020.296319.473.
- Pegios, I.P. and Hatzigeorgiou, G.D. (2018), "Finite element free and forced vibration analysis of gradient elastic beam structures", Acta Mechanica, 229(12), 4817-4830. https://doi.org/10.1007/s00707-018-2261-9
- Sheng, G.G. and Wang, X. (2019), "Nonlinear forced vibration of functionally graded Timoshenko microbeams with thermal effect and parametric excitation", Int. J. Mech. Sci., 155, 405-416. https://doi.org/10.1016/j.ijmecsci.2019.03.015.
- Taati, E. and Fallah, F. (2019), "Exact solution for frequency response of sandwich microbeams with functionally graded cores", J. Vib. Control, 25(19-20), 2641-2655. https://doi.org/10.1177/1077546319864645.
- Tao, C., Fu, Y.M. and Dai, H.L. (2016), "Nonlinear dynamic analysis of fiber metal laminated beams subjected to moving loads in thermal environment", Compos. Struct., 140, 410-416. https://doi.org/10.1016/j.compstruct.2015.12.011.
- Wang, Y. and Wu, D. (2016), "Thermal effect on the dynamic response of axially functionally graded beam subjected to a moving harmonic load", Acta Astronautica, 127, 171-181. https://doi.org/10.1016/j.actaastro.2016.05.030.
- Wang, Y. and Wu, D. (2017), "Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory", Aerosp. Sci. Technol., 66, 83-91. https://doi.org/10.1016/j.ast.2017.03.003.
- Wang, Y., Xie, K. and Fu, T. (2018), "Vibration analysis of functionally graded porous shear deformable tubes excited by moving distributed loads", Acta Astronautica, 151, 603-613. https://doi.org/10.1016/j.actaastro.2018.06.003.
- Wang, Y., Xie, K., Fu, T. and Shi, C. (2019), "Vibration response of a functionally graded graphene nanoplatelet reinforced composite beam under two successive moving masses", Compos. Struct., 209, 928-939. https://doi.org/10.1016/j.compstruct.2018.11.014
- Wang, Y., Zhou, A., Fu, T. and Zhang, W. (2020a), "Transient response of a sandwich beam with functionally graded porous core traversed by a non-uniformly distributed moving mass", Int. J. Mech. Mater. Design, 16(3), 519-540. https://doi.org/10.1007/s10999-019-09483-9
- Wang, Y., Xie, K. and Fu, T. (2020b), "Size-dependent dynamic stability of a FG polymer microbeam reinforced by graphene oxides", Struct. Eng. Mech., 73(6), 685-698. https://doi.org/10.12989/sem.2020.73.6.685.
- Wang, Y., Ren, H., Fu, T. and Shi, C. (2020c), "Hygrothermal mechanical behaviors of axially functionally graded microbeams using a refined first order shear deformation theory", Acta Astronautica, 166, 306-316. https://doi.org/10.1016/j.actaastro.2019.10.036.
- Wang, Y., Xie, K. and Fu, T. (2020d), "Vibration analysis of functionally graded graphene oxide-reinforced composite beams using a new Ritz-solution shape function", J. Braz. Soc. Mech. Sci. Eng., 42(4), 1-14. https://doi.org/10.1007/s40430-020-2258-x
- Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002.
- Wu, D., Liu, A., Huang, Y., Huang, Y., Pi, Y. and Gao, W. (2018), "Dynamic analysis of functionally graded porous structures through finite element analysis", Eng. Struct., 165, 287-301. https://doi.org/10.1016/j.engstruct.2018.03.023.
- Yang, J., Chen, D. and Kitipornchai, S. (2018), "Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method", Compos. Struct., 193, 281-294. https://doi.org/10.1016/j.compstruct.2018.03.090.
- Zhao, J., Xie, F., Wang, A., Shuai, C., Tang, J. and Wang, Q. (2019), "Vibration behavior of the functionally graded porous (FGP) doubly-curved panels and shells of revolution by using a semi-analytical method", Compos. Part B: Eng., 157, 219-238. https://doi.org/10.1016/j.compositesb.2018.08.087.