DOI QR코드

DOI QR Code

GENERALIZED PSEUDO BE-ALGEBRAS

  • Aslam, Ayesha (Department of Mathematics, Abbottabad University of Science and Technology) ;
  • Hussain, Fawad (Department of Mathematics, Abbottabad University of Science and Technology) ;
  • Kim, Hee Sik (Department of Mathematics, Hanyang University, College of Natural Sciences)
  • Received : 2021.02.22
  • Accepted : 2021.04.30
  • Published : 2021.06.25

Abstract

In this paper, we define a new algebraic structure known as a generalized pseudo BE-algebra which is a generalization of a pseudo BE-algebra. We construct some examples in order to show the existence of the generalized pseudo BE-algebra. Moreover, we characterize different classes of generalized pseudo BE-algebras by some results.

Keywords

References

  1. S. S. Ahn and Y.H. So, On ideals and upper sets in BE-algebras, Sci. Math. Jpn. 68 (2) (2008), 279-285.
  2. S. S. Ahn and K. S. So, On generalized upper sets in BE-algebras, Bull. Korean Math. Soc., 46 (2) (2009), 281-287. https://doi.org/10.4134/BKMS.2009.46.2.281
  3. S. S. Ahn, Y. H. Kim and J. M. Ko, Filters in commutative BE-algebras, Bull. Korean Math. Soc., 27 (2) (2012), 233-242. https://doi.org/10.4134/CKMS.2012.27.2.233
  4. R. A. Borzooei, A. B. Saeid, A. Rezaei, A. Radfar and R. Ameri, On Pseudo BE-algebras, General Algebra and Applications, 33 (2013), 95-108.
  5. G. Georgescu and A. Iorgulescu, Pseudo MV-algebras: a non-commutative extension of MV-algebras, The Proceeding of the Fourth International Symposium on Economics Informatics, Bucharest, Romania, (1999), 961-968.
  6. G. Georgescu and A. Iorgulescu, Pseudo BL-algebras: a non-commutative extension of BL-algebras, Abstracts of the Fifth International Conference FSTA 2000, Slovakia, (2000), 90-92.
  7. G. Georgescu and A. Iorgulescu, Pseudo BCK-algebras: an extension of BCK-algebras, Combinatorics, computability and logic, Springer Ser. Discrete Math. Theor. Comput. Sci., Springer, London, (2001), 97-114.
  8. J. M. Howie, Fundamental of Semigroup Theory, Clarendon press, Oxford, 1995.
  9. Y. Imai and K. Iseki, On axiom systems of propositional Calculi, XIV proc. Jpn. Academy, 42 (1966), 19-22.
  10. Y. B. Jun, H. S. Kim and J. Neggers,On pseudo BCI-ideals of pseudo BCI-algebras, Math. Bec., 58 (2006), 39-46.
  11. Y. H. Kim and K. S. So, On minimality in pseudo BCI-algebras, Commun. Korean Math. Soc., 27 (1) (2012), 7-13. https://doi.org/10.4134/CKMS.2012.27.1.007
  12. H. S. Kim and Y. H. Kim,On BE-algebras, Sci, Math, Jpn., 66 (1), (2007) 113-117.
  13. B. L. Meng, On flters in BE-algebras, Sci. Math. Jpn., 71 (2010), 201-207.
  14. C. C. Pinter, A Book of Set Theory, Dover Publication, Inc. Mineola, New York, 2014.
  15. A. Rezaei and A. B. Saeid, Some results in BE-algebras, Analele Universi-tatii Oradea Fasc. Matematica, Tom 19 (2012), 33-44.
  16. A. B. Saeid, A. Rezaei and R. A. Borzoei, Some types of flters in BE-algebras, Mathematics in Computer Science, 7, (2013), 341-352. https://doi.org/10.1007/s11786-013-0157-6
  17. A. Walendziak,On commutative BE-algebras, Sci. Math. Jpn., 69 (2) (2008), 585-588.
  18. A. Walendziak, On axiom systems of pseudo BCK-algebras, Bull. Malays. Math. Sci. Soc., 34 (2) (2011), 287-293.