DOI QR코드

DOI QR Code

Photo-triggered Theranostic Nanoparticles in Cancer Therapy

  • Abueva, Celine DG. (Beckman Laser Institute Korea)
  • Received : 2021.02.22
  • Accepted : 2021.03.09
  • Published : 2021.03.31

Abstract

In cancer therapy, it is often desirable to use precision medicine that involves treatments of high specificity. One such treatment is the use of photo-triggered theranostic nanoparticles. These nanoparticles make it possible to visualize and treat tumors specifically in a controlled manner with a single injection. Several novel and powerful photo-triggered theranostic nanoparticles have been developed. These range from small organic dyes, semiconducting and biopolymers, to inorganic nanomaterials such as iron-oxide or gold nanoparticles, carbon nanotubes, and upconversion nanoparticles. Using photo-triggered theranostic nanoparticles and localized irradiation, complete tumor ablation can be achieved without causing significant toxicity to normal tissue. Given the great advances and promising future of theranostic nanoparticles, this review highlights the progress that has been made in the past couple of years, the current challenges faced and offers a future perspective.

Keywords

References

  1. Jeelani S, Reddy RC, Maheswaran T, Asokan GS, Dany A, Anand B. Theranostics: a treasured tailor for tomorrow. J Pharm Bioallied Sci 2014;6(Suppl 1):S6-8.
  2. Xie J, Lee S, Chen X. Nanoparticle-based theranostic agents. Adv Drug Deliv Rev 2010;62:1064-79. https://doi.org/10.1016/j.addr.2010.07.009
  3. Prasad R, Jain NK, Conde J, Srivastava R. Localized nanotheranostics: recent developments in cancer nanomedicine. Mater Today Adv 2020;8:100087. https://doi.org/10.1016/j.mtadv.2020.100087
  4. Xie W, Deng WW, Zan M, Rao L, Yu GT, Zhu DM, et al. Cancer cell membrane camouflaged nanoparticles to realize starvation therapy together with checkpoint blockades for enhancing cancer therapy. ACS Nano 2019;13:2849-57. https://doi.org/10.1021/acsnano.8b03788
  5. Feng L, Xie R, Wang C, Gai S, He F, Yang D, et al. Magnetic targeting, tumor microenvironment-responsive intelligent nanocatalysts for enhanced tumor ablation. ACS Nano 2018;12:11000-12. https://doi.org/10.1021/acsnano.8b05042
  6. Feng L, Gai S, He F, Yang P, Zhao Y. Multifunctional bismuth ferrite nanocatalysts with optical and magnetic functions for ultrasound-enhanced tumor theranostics. ACS Nano 2020;14:7245-58. https://doi.org/10.1021/acsnano.0c02458
  7. Gao HD, Thanasekaran P, Chiang CW, Hong JL, Liu YC, Chang YH, et al. Construction of a near-infrared-activatable enzyme platform To remotely trigger intracellular signal transduction using an upconversion nanoparticle. ACS Nano 2015;9:7041-51. https://doi.org/10.1021/acsnano.5b01573
  8. Wang C, Xu H, Liang C, Liu Y, Li Z, Yang G, et al. Iron oxide @ polypyrrole nanoparticles as a multifunctional drug carrier for remotely controlled cancer therapy with synergistic antitumor effect. ACS Nano 2013;7:6782-95. https://doi.org/10.1021/nn4017179
  9. Yu J, Ju Y, Zhao L, Chu X, Yang W, Tian Y, et al. Multistimuli-regulated photochemothermal cancer therapy remotely controlled via Fe5C2 nanoparticles. ACS Nano 2016;10:159-69. https://doi.org/10.1021/acsnano.5b04706
  10. Jiang Y, Cui D, Fang Y, Zhen X, Upputuri PK, Pramanik M, et al. Amphiphilic semiconducting polymer as multifunctional nanocarrier for fluorescence/photoacoustic imaging guided chemophotothermal therapy. Biomaterials 2017;145:168-77. https://doi.org/10.1016/j.biomaterials.2017.08.037
  11. Peng H, Liu X, Wang G, Li M, Bratlie KM, Cochran E, et al. Polymeric multifunctional nanomaterials for theranostics. J Mater Chem B 2015;3:6856-70. https://doi.org/10.1039/c5tb00617a
  12. Zhu H, Fang Y, Miao Q, Qi X, Ding D, Chen P, et al. Regulating near-infrared photodynamic properties of semiconducting polymer nanotheranostics for optimized cancer therapy. ACS Nano 2017;11:8998-9009. https://doi.org/10.1021/acsnano.7b03507
  13. Fan Z, Fu PP, Yu H, Ray PC. Theranostic nanomedicine for cancer detection and treatment. J Food Drug Anal 2014;22:3-17. https://doi.org/10.1016/j.jfda.2014.01.001
  14. Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev 2016;116:2602-63. https://doi.org/10.1021/acs.chemrev.5b00346
  15. Ulbrich K, Hola K, Subr V, Bakandritsos A, Tucek J, Zboril R. Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem Rev 2016;116:5338-431. https://doi.org/10.1021/acs.chemrev.5b00589
  16. Wu X, Gao Y, Dong CM. Polymer/gold hybrid nanoparticles: from synthesis to cancer theranostic applications. RSC Adv 2015;5:13787-96. https://doi.org/10.1039/C4RA16454G
  17. Yong KT, Wang Y, Roy I, Rui H, Swihart MT, Law WC, et al. Preparation of quantum dot/drug nanoparticle formulations for traceable targeted delivery and therapy. Theranostics 2012;2:681-94. https://doi.org/10.7150/thno.3692
  18. Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, et al. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 2007;7:3065-70. https://doi.org/10.1021/nl071546n
  19. Kumar R, Kulkarni A, Nagesha DK, Sridhar S. In vitro evaluation of theranostic polymeric micelles for imaging and drug delivery in cancer. Theranostics 2012;2:714-22. https://doi.org/10.7150/thno.3927
  20. Ali I, Alsehli M, Scotti L, Tullius Scotti M, Tsai ST, Yu RS, et al. Progress in polymeric nano-medicines for theranostic cancer treatment. Polymers (Basel) 2020;12:598. https://doi.org/10.3390/polym12030598
  21. Luk BT, Zhang L. Current advances in polymer-based nanotheranostics for cancer treatment and diagnosis. ACS Appl Mater Interfaces 2014;6:21859-73. https://doi.org/10.1021/am5036225
  22. Lison D, Muller J. To the editor. Toxicol Sci 2008;101:179-80. https://doi.org/10.1093/toxsci/kfm249
  23. Lison D, Muller J. Lung and systemic responses to carbon nanotubes (CNT) in mice. Toxicol Sci 2008;101:179-80; author reply 181-2. https://doi.org/10.1093/toxsci/kfm249
  24. Choi SJ, Oh JM, Choy JH. Toxicological effects of inorganic nanoparticles on human lung cancer A549 cells. J Inorg Biochem 2009;103:463-71. https://doi.org/10.1016/j.jinorgbio.2008.12.017
  25. Hu CM, Kaushal S, Tran Cao HS, Aryal S, Sartor M, Esener S, et al. Half-antibody functionalized lipid-polymer hybrid nanoparticles for targeted drug delivery to carcinoembryonic antigen presenting pancreatic cancer cells. Mol Pharm 2010;7:914-20. https://doi.org/10.1021/mp900316a
  26. Clawson C, Ton L, Aryal S, Fu V, Esener S, Zhang L. Synthesis and characterization of lipid-polymer hybrid nanoparticles with pH-triggered poly(ethylene glycol) shedding. Langmuir 2011;27:10556-61. https://doi.org/10.1021/la202123e
  27. Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res 2016;33:2373-87. https://doi.org/10.1007/s11095-016-1958-5
  28. Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano 2009;3:16-20. https://doi.org/10.1021/nn900002m
  29. Fang RH, Hu CM, Chen KN, Luk BT, Carpenter CW, Gao W, et al. Lipid-insertion enables targeting functionalization of erythrocyte membrane-cloaked nanoparticles. Nanoscale 2013;5:8884-8. https://doi.org/10.1039/c3nr03064d
  30. Oerlemans C, Bult W, Bos M, Storm G, Nijsen JF, Hennink WE. Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm Res 2010;27:2569-89. https://doi.org/10.1007/s11095-010-0233-4
  31. Feng Q, Liu Y, Huang J, Chen K, Huang J, Xiao K. Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Sci Rep 2018;8:2082. https://doi.org/10.1038/s41598-018-19628-z
  32. Kharlamov AN, Gabinsky JL. Plasmonic photothermic and stem cell therapy of atherosclerotic plaque as a novel nanotool for angioplasty and artery remodeling. Rejuvenation Res 2012;15:222-30. https://doi.org/10.1089/rej.2011.1305
  33. Qiu TA, Bozich JS, Lohse SE, Vartanian AM, Jacob LM, Meyer BM, et al. Gene expression as an indicator of the molecular response and toxicity in the bacterium Shewanella oneidensis and the water flea Daphnia magna exposed to functionalized gold nanoparticles. Environ Sci 2015;2:615-29. https://doi.org/10.1039/c5en00037h
  34. Libutti SK, Paciotti GF, Byrnes AA, Alexander HR Jr, Gannon WE, Walker M, et al. Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin Cancer Res 2010;16:6139-49. https://doi.org/10.1158/1078-0432.ccr-10-0978
  35. Marill J, Anesary NM, Zhang P, Vivet S, Borghi E, Levy L, et al. Hafnium oxide nanoparticles: toward an in vitro predictive biological effect? Radiat Oncol 2014;9:150. https://doi.org/10.1186/1748-717X-9-150
  36. Cheng L, Wang C, Liu Z. Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy. Nanoscale 2013;5:23-37. https://doi.org/10.1039/C2NR32311G
  37. Wang L, Yan R, Huo Z, Wang L, Zeng J, Bao J, et al. Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew Chem Int Ed Engl 2005;44:6054-7. https://doi.org/10.1002/anie.200501907
  38. Mai HX, Zhang YW, Si R, Yan ZG, Sun LD, You LP, et al. High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. J Am Chem Soc 2006;128:6426-36. https://doi.org/10.1021/ja060212h
  39. Wang F, Han Y, Lim CS, Lu Y, Wang J, Xu J, et al. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 2010;463:1061-5. https://doi.org/10.1038/nature08777
  40. Xiong L, Chen Z, Tian Q, Cao T, Xu C, Li F. High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors. Anal Chem 2009;81:8687-94. https://doi.org/10.1021/ac901960d
  41. Liu Q, Sun Y, Li C, Zhou J, Li C, Yang T, et al. 18F-labeled magnetic-upconversion nanophosphors via rare-earth cation-assisted ligand assembly. ACS Nano 2011;5:3146-57. https://doi.org/10.1021/nn200298y
  42. Zhou J, Yu M, Sun Y, Zhang X, Zhu X, Wu Z, et al. Fluorine-18-labeled Gd3+/Yb3+/Er3+ co-doped NaYF4 nanophosphors for multimodality PET/MR/UCL imaging. Biomaterials 2011;32:1148-56. https://doi.org/10.1016/j.biomaterials.2010.09.071
  43. Wang C, Cheng L, Liu Z. Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy. Biomaterials 2011;32:1110-20. https://doi.org/10.1016/j.biomaterials.2010.09.069
  44. Qian HS, Guo HC, Ho PC, Mahendran R, Zhang Y. Mesoporoussilica-coated up-conversion fluorescent nanoparticles for photodynamic therapy. Small 2009;5:2285-90. https://doi.org/10.1002/smll.200900692
  45. Wang C, Tao H, Cheng L, Liu Z. Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials 2011;32:6145-54. https://doi.org/10.1016/j.biomaterials.2011.05.007
  46. Cheng L, Yang K, Li Y, Chen J, Wang C, Shao M, et al. Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. Angew Chem Int Ed Engl 2011;50:7385-90. https://doi.org/10.1002/anie.201101447
  47. Luo D, Carter KA, Razi A, Geng J, Shao S, Giraldo D, et al. Doxorubicin encapsulated in stealth liposomes conferred with light-triggered drug release. Biomaterials 2016;75:193-202. https://doi.org/10.1016/j.biomaterials.2015.10.027
  48. Carter KA, Shao S, Hoopes MI, Luo D, Ahsan B, Grigoryants VM, et al. Porphyrin-phospholipid liposomes permeabilized by near-infrared light. Nat Commun 2014;5:3546. https://doi.org/10.1038/ncomms4546